
Parallel Streams,
CompletableFutures, and All That

Parallelism and Concurrency in Java

Contact Info
Ken Kousen

Kousen IT, Inc.

ken.kousen@kousenit.com

http://www.kousenit.com

http://kousenit.org (blog)

@kenkousen

mailto:ken.kousen@kousenit.com
http://www.kousenit.com
http://kousenit.org
http://twitter.com/kenkousen

Modern Java Recipes
Examples are from the book

Source code:

https://github.com/kousen/java_8_recipes

https://github.com/kousen/cfboxscores

https://github.com/kousen/java_8_recipes
https://github.com/kousen/cfboxscores

Videos (available on Safari)
O'Reilly video courses: See Safari Books Online for details

Groovy Programming Fundamentals

Practical Groovy Programming

Mastering Groovy Programming

Learning Android

Practical Android

Gradle Fundamentals

Gradle for Android

Spring Framework Essentials

Advanced Java Development

https://www.safaribooksonline.com/
http://shop.oreilly.com/product/0636920039839.do
http://shop.oreilly.com/product/0636920041849.do
http://shop.oreilly.com/product/0636920041856.do
http://shop.oreilly.com/product/0636920043812.do
http://shop.oreilly.com/product/0636920043829.do
http://shop.oreilly.com/product/0636920044536.do
http://shop.oreilly.com/product/0636920046127.do
http://shop.oreilly.com/product/0636920046837.do
http://shop.oreilly.com/product/0636920051688.do

Let's Get This Out Of The Way...
Concurrency:

Multiple tasks can run at the same time

You design for concurrency

Parallelism:

Task actually run simultaneously

Simple Made Easy
Keynote by Rich Hickey

http://www.infoq.com/presentations/Simple-Made-Easy

Converting to parallel streams is easy

That doesn't make concurrency or parallelism simple

http://www.infoq.com/presentations/Simple-Made-Easy

Going Parallel

"Parallelism is strictly an optimization"

-- Brian Goetz

Five-part series of articles on Java Streams at IBM DeveloperWorks

https://www.ibm.com/developerworks/library/j-java-streams-4-brian-goetz/index.html

https://www.ibm.com/developerworks/library/j-java-streams-4-brian-goetz/index.html

Converting a stream
By default, all stream factory methods result in sequential streams

Collection.stream()

 (as opposed to Collection.parallelStream())

Stream.of(T...)

Stream.iterate(seed, UnaryOperator<T>)

Stream.generate(Supplier<T>)

Converting a stream
Stream.parallel()

Stream.sequential()

Intermediate operations

Return new streams, or the same if already as required

Check with isParallel()

Converting a stream
Note:

Can't do both sequential and parallel in same pipeline

SequentialToParallelTest.java

When is Parallel Worth It?
Requirements:

- Operations are independent and associative

- a op (b op c) === (a op b) op c

When is Parallel Worth It?
Requirements:

- Operations are independent and associative

- a op (b op c) === (a op b) op c

- Either lots of data, or long processing per element

- N * Q > 10000

When is Parallel Worth It?
Requirements:

- Operations are independent and associative

- a op (b op c) === (a op b) op c

- Either lots of data, or long processing per element

- N * Q > 10000

- Data easy to partition

- Arrays are good, linked lists are bad

JMH
Java Microbenchmark Harness

Part of the OpenJDK project

http://openjdk.java.net/projects/code-tools/jmh/

IntelliJ plugin

https://github.com/artyushov/idea-jmh-plugin

http://openjdk.java.net/projects/code-tools/jmh/
https://github.com/artyushov/idea-jmh-plugin

Parallel Streams
By default, uses the common ForkJoinPool

Note: implements ExecutorService

Performs work stealing

Default pool size:

ForkJoinPool.commonPool().getPoolSize() ==

Runtime.getRuntime().availableProcessors() - 1

Parallel streams
Replace stream() with parallelStream()

Introduces overhead

If previous conditions apply, may help a lot

ParallelDemo.java

DoublingDemo.java (JMH)

Changing the common pool size
Use -D flag

java.util.concurrent.ForkJoinPool.common.parallelism

Equivalently,

System.setProperty("...above…", 16)

CommonPoolSize.java

Future
Future<T> ExecutorService.submit(Callable<T> callable)

Callable is a functional interface, so use a lambda expression

Method calls return immediately, but

you have to call get() (a blocking call) to retrieve the result

Future
Difficult to coordinate multiple futures

while (!future.isDone()) {

 System.out.println("Waiting...");

}

busy waiting

Can generate billions of calls … not a good idea

FutureDemo.java

CompletableFuture
Great for coordination

But first, how do you complete a CompletableFuture?

- complete(T value)

- completedFuture(U value)

- completeExceptionally(Throwable ex)

Why all three?

CompletableFutureDemos.java

private Map<Integer, Product> cache =
new ConcurrentHashMap<>();

private Product getLocal(int id) { return cache.get(id); }

private Product getRemote(int id) {
try {

Thread.sleep(100);
 if (id == 666) {

throw new RuntimeException("Evil request");
}

} catch (InterruptedException ignored) { }
return new Product(id, "name");

}

public CompletableFuture<Product> getProduct(int id) {
 try {
 Product product = getLocal(id);
 if (product != null) {
 return CompletableFuture.completedFuture(product);
 } else {
 CompletableFuture<Product> future = new CompletableFuture<>();
 Product p = getRemote(id); // legacy, synchronous
 cache.put(id, p);
 future.complete(p);
 return future;
 }
 } catch (Exception e) {
 CompletableFuture<Product> future = new CompletableFuture<>();
 future.completeExceptionally(e);
 return future;
 }
}

Running asynchronously
CompletableFuture<T> implements Future<T>, CompletionStage<T>

CompletionStage has 38 methods

Lots of overloads

CompletableFuture
Some mnemonics:

apply methods take a Function

accept methods take a Consumer

run methods take a Runnable

supply methods take a Supplier

CompletableFuture
 stage.thenApply(x -> square(x))

 .thenAccept(x -> System.out.print(x))

 .thenRun(() -> System.out.println())

CompletableFutureTests.java

CompletableFuture
More patterns in method names:

- then

- either

- both

- combine

CompletableFuture
Method names often have additional suffix async

Without async, in same thread as caller

With async, re-submitted to thread pool

CompletableFuture
Also overloaded to take an extra arg of type Executor

Without, use common ForkJoinPool

With, use supplied thread pool

CompletableFutureTests.java

public CompletableFuture<Product> getProduct(int id) {
 try {
 Product product = getLocal(id);
 if (product != null) {
 return CompletableFuture.completedFuture(product);
 } else {

// async
 return CompletableFuture.supplyAsync(() -> {
 Product p = getRemote(id);
 cache.put(id, p);
 return p;
 });
 }
 } catch (Exception e) {
 CompletableFuture<Product> future = new CompletableFuture<>();
 future.completeExceptionally(e);
 return future;
 }
}

Completing the CompletableFuture

get() blocks, declares ExecutionException, InterruptedException

join() blocks, declares (unchecked) CompletionException

Can just wait for the pool to become "quiescent"

Await quiescence

ForkJoinPool.commonPool()

.awaitQuiescence(1, TimeUnit.SECONDS);

AwaitQuiesenceTest.java

All of
CompletableFuture.allOf(CompletableFuture<?>... cfs)

static method

returns CompletableFuture<Void>

Use join() to wait for all to be done

Post-process using streams to extract results

AllOfDemo.java

Boxscores
Bigger demo

Major League Baseball boxscores

http://gd2.mlb.com/components/game/mlb/

Subdirectories for year, month, day

Boxscores in JSON format for each game on a given day

http://gd2.mlb.com/components/game/mlb/

Boxscores
1. Access site for games on a range of dates

2. Determine game links for each day

3. Download JSON boxscore for each game

4. Transform JSON data to objects

5. Save results to local files

6. Determine scores of each game

7. Determine game with highest total score

8. Print individual game scores, along with max game and max score

GitHub repo: https://github.com/kousen/cfboxscores

https://github.com/kousen/cfboxscores

Summary
- Going parallel is easy, benefitting from it is hard

- Parallel streams use common ForkJoinPool

- CompletableFuture lets you coordinate futures

- Many, many methods to do the coordination

