
Machine Learning Design Patterns for ML Ops

Valliappa (Lak) Lakshmanan
Global Head of Analytics & AI Solutions, 
Google Cloud
Twitter:  @lak_gcp
lak@google.com



““



Design patterns are 
formalized best practices to 
solve common problems 
when designing a software 
system.



Workflow Pipeline
Transform
Multimodal Input
Feature Store
Cascade

https://github.com/GoogleCloudPlatform/ml-design-patterns

https://github.com/GoogleCloudPlatform/ml-design-patterns


01
Workflow Pipeline



Typical 
development 
workflow is 
monolithic



Experiments 
are ad-hoc and 
not repeatable



Hyperparameter tuning has wasteful repetition

Model 
Training

Model 
Evaluation & 

Validation

Data 
Preparation

Parameter Set: A

Model 
Training

Model 
Evaluation 

& 
Validation

Data 
Preparati

on

Parameter Set: C

Model 
Training

Model 
Evaluation & 

Validation

Data 
Preparation

Parameter Set: B

Model 
Training

Model 
Evaluation & 

Validation

Data 
Preparation

Parameter Set: C

Model 
Training

Model 
Evaluation & 

Validation

Data 
Preparation

Parameter Set: D

Trained 
Model  A 

Trained 
Model B 

Trained 
Model C

Model 
Performance 
comparison

Trained 
Model D 



MLOps has some DevOps concepts, and adds 
data validation & continuous evaluation/training



DevOps MLOps

1 Test and validate code and 
components

Also test and validate data, data 
schemas, and models

2 Focus on a single software 
package or service

Also consider the whole system, the 
ML training pipeline

3 Deploy code and move to 
the next task

Constantly monitor, retrain and serve 
the model

But MLOps differs from DevOps in important ways



Label 1

Label 2

Label 3

Label 4

Data 
pre-processing 

& validation

Feature 
engineering

Training models 
in parallel

Score on test set 
& pick best 

model

Deploy for 
serving

A pipeline is an executable DAG of ML steps



Each step of the 
pipeline is a 
container

Pipeline runs can be grouped into 
Experiments

Logs are associated with each step 
of each run

An artifact repository stores the 
parameters & data passed between 
steps



Serving and 
Monitoring

Continuous 
Training

Experimentation/
Development

Code 
Repository

Code and 
configurations

Training 
Pipeline CI/CD

Artifact 
Repository

Pipeline 
artifacts

Model 
Registry

Model Serving 
CI/CD

Serving 
Infrastructure

Trained 
model

Model 
service

 Logs

Serving 
logs

TFX provides prescriptive 
workflow and library of 
prebuilt components



Workflow Pipeline
Capture ML workflows in a DAG

The pipeline DAG:
● Executable as a whole or in parts
● Can be triggered by events
● Logging and monitoring for each 

step, run, experiment
● Artifacts stored in repository

Prebuilt components, which:
● Understand training vs. inference
● Avoid rerunning if output artifact 

already up-to-date in repository
● Run as containers on the pipelines 

platform

pipeline.Pipeline(

      pipeline_name='huricane_prediction',

      pipeline_root='path/to/pipeline/code',

      components=[

          bigquery_gen, statistics_gen, schema_gen, train, model_pusher

      ]

  )

bigquery_gen = BigQueryExampleGen(query=query)

statistics_gen = StatisticsGen(examples=example_gen.outputs['examples'])

…

model_pusher = Pusher(

      model=trainer.outputs['model'],

      model_blessing=evaluator.outputs['blessing'],

      push_destination=pusher_pb2.PushDestination(

          filesystem=pusher_pb2.PushDestination.Filesystem(

              base_directory=serving_model_dir)))



02
Transform



Imagine a model to predict the length of rentals

Machine 
Learning 

Model
duration

dayofweek

station_name

start_date

station_name

Transform

INPUTS FEATURES OUTPUTS

hourofday



Who does transformation during 
prediction?

Same

Model 
serving

Deploy

Prediction

Ideally, call with 
input variables

Inputs

Trained 
Model

Pre 
processing

Feature
creation

Train
model

Clients



CREATE OR REPLACE MODEL ch09edu.bicycle_model
OPTIONS(input_label_cols=['duration'], 
        model_type='linear_reg')
AS

SELECT 
  duration
  , start_station_name
  , CAST(EXTRACT(dayofweek from start_date) AS STRING)
         as dayofweek
  , CAST(EXTRACT(hour from start_date) AS STRING)
         as hourofday
FROM 
  `bigquery-public-data.london_bicycles.cycle_hire`

Ideally, client code does not have to know about 
all the transformations that were carried out

SELECT * FROM ML.PREDICT(MODEL ch09edu.bicycle_model,(
  350 AS duration
  , 'Kings Cross' AS start_station_name
  , '3' as dayofweek
  , '18' as hourofday
))

Leading cause of 
training-serving skew



CREATE OR REPLACE MODEL ch09edu.bicycle_model
OPTIONS(input_label_cols=['duration'], 
        model_type='linear_reg')
AS

SELECT 
  duration
  , start_station_name
  , CAST(EXTRACT(dayofweek from start_date) AS STRING)
         as dayofweek
  , CAST(EXTRACT(hour from start_date) AS STRING)
         as hourofday
FROM 
  `bigquery-public-data.london_bicycles.cycle_hire`

CREATE OR REPLACE MODEL ch09edu.bicycle_model
OPTIONS(input_label_cols=['duration'], 
        model_type='linear_reg')
TRANSFORM(
  SELECT * EXCEPT(start_date)
  , CAST(EXTRACT(dayofweek from start_date) AS STRING)
         as dayofweek
  , CAST(EXTRACT(hour from start_date) AS STRING)
         as hourofday
)
AS
SELECT 
  duration, start_station_name, start_date
FROM 
  `bigquery-public-data.london_bicycles.cycle_hire`

TRANSFORM ensures transformations are 
automatically applied during ML.PREDICT

SELECT * FROM ML.PREDICT(MODEL ch09edu.bicycle_model,(
  350 AS duration
  , 'Kings Cross' AS start_station_name
  , '3' as dayofweek
  , '18' as hourofday
))

SELECT * FROM ML.PREDICT(MODEL ch09edu.bicycle_model,(
  350 AS duration
  , 'Kings Cross' AS start_station_name
  , CURRENT_TIMESTAMP() as start_date
))



In TensorFlow/Keras, do transformations in Lambda 
Layers so that they are part of the model graph

for lon_col in ['pickup_longitude', 'dropoff_longitude']:  # in range -70 to -78

        transformed[lon_col] = tf.keras.layers.Lambda(

            lambda x: (x+78)/8.0, 

            name='scale_{}'.format(lon_col)

        )(inputs[lon_col])

Moving an ML model to production 
is much easier if you keep inputs, 
features, and transforms separate



Transform pattern: the model graph should include 
the transformations

Machine 
Learning 

Model
duration

dayofweek

station_name

start_date

station_name

Transform

INPUTS FEATURES OUTPUTS

hourofday



03
Multimodal input



Is this an image 
classification 
problem?

The input is multimodal: an image 
and some structured data



Much clearer in the 
case of free form 
text in tabular data

There are multiple ways of 
representing the text feature (length, 
sentiment, language, etc.)

Plus, most models will need a mix of 
structured and unstructured data



Concatenate the 
multimodal 
representations 

Concatenate the inputs as a layer in 
the model, so that it is part of the 
model graph (like the Transform 
pattern)



Chapter Design pattern Problem solved Solution

Data 
Representation

Multimodal Input
Choose between several potential data 
representations

Concatenate all the available data 
representations

Problem 
Representation

Cascade

Reproducibility

Transform

The inputs to a model must be 
transformed to create the features the 
model expects and that process must be 
consistent between training and serving

Explicitly capture and store the transformations 
applied to convert the model inputs into features

Workflow 
Pipeline

When scaling the ML workflow, you need 
a way to run trials independently and 
track performance for each step of the 
pipeline.

Make each step of the ML workflow a separate, 
containerized service which can be chained 
together to make a pipeline that can be run with 
a single REST API call

Feature Store

Simpler if 
used within

Is part of



Connections between patterns

https://github.com/GoogleCloudPlatform/ml-design-patterns/blob/master/08_connected_patterns/machine-learning-design-patterns.png 

https://github.com/GoogleCloudPlatform/ml-design-patterns/blob/master/08_connected_patterns/machine-learning-design-patterns.png


04
Feature Store



A single pipeline for 
ML training 
happens only in toy 
problems

Features get reused
Aggregations get reused
Transforms get reused
Some Transforms are real-time

Model 1

User 
details P(return)

Transaction 
details

Windowed 
Aggregation

Product 
attributes

Windowed 
Aggregation

Current 
store 
environment

Transform

Model 2



Feature Store: 
Centralized location 
to store feature sets 
(data storage)

Lambda architecture:
● Store/serve features for 

low-latency inference
● Store/serve features for large 

batch access in training
● Metadata layer for versioning 

of different feature sets
API to manage loading and retrieving 
feature data. 



Feast

Developed by Google and GoJek



Ingesting into Feast

Four steps:
1. create a FeatureSet
2. add entities and features
3. register the FeatureSet 

(returns JSON schema)
4. ingest feature data into the 

FeatureSet.

Feast, like TFX, uses Beam for 
feature creation



Retrieving from 
Feast

Feature data can be retrieved either 
offline, using historical features for 
model training, or online, for serving.

Two separate REST endpoints

Feast uses Redis and BigQuery for 
storage for online and batch 
respectively



05
Cascade



Some ML problems 
benefit from being 
broken up

Will this item be returned?

Transaction 
details

P(return)

Transaction 
details

P(return)

P(return)

P(reseller)



What is the training 
data for model #2?
(a) Same as original training dataset:

 WHERE seller_type=“reseller”
(b) Use predictions of first model:

 WHERE prob_reseller > 0.5

Model #2

Transaction 
details

P(return)

P(return)

P(reseller)

❓



Training this model 
requires training a 
Cascade

Otherwise, Model #2 and #3 will be 
fragile to changes to Model #1

Transaction 
details

P(return)

P(return)

P(reseller)



Use Cascade to 
handle rare 
scenarios with less 
data & simpler 
models

Bike rental 
details

Distance

Distance

P(duration > 4h)

Bike rental 
details (long)

Bike rental 
details 
(typical)

https://www.flickr.com/photos/mobikefed/3350883056



Use Workflow 
Pipeline to 
automate Cascade 
even during 
development

Bike rental 
details

Distance

Distance

P(duration > 4h)

Bike rental 
details (long)

Bike rental 
details 
(typical)

Small changes here

Sensitive to 
upstream changes



06
Summary



Workflow Pipeline
Transform
Multimodal Input
Feature Store
Cascade

https://github.com/GoogleCloudPlatform/ml-design-patterns

https://github.com/GoogleCloudPlatform/ml-design-patterns


Chapter Design pattern Problem solved Solution

Data 
Representation

Multimodal Input
Choose between several potential data 
representations

Concatenate all the available data 
representations

Problem 
Representation

Cascade
Maintainability or drift issues when a 
machine learning problem is broken into a 
series of ML problems

Treat your ML system as a unified workflow for 
the purposes of training, evaluation, and 
prediction.

Reproducibility

Transform

The inputs to a model must be 
transformed to create the features the 
model expects and that process must be 
consistent between training and serving

Explicitly capture and store the transformations 
applied to convert the model inputs into features

Workflow 
Pipeline

When scaling the ML workflow, you need 
a way to run trials independently and 
track performance for each step of the 
pipeline.

Make each step of the ML workflow a separate, 
containerized service which can be chained 
together to make a pipeline that can be run with 
a single REST API call

Feature Store

The ad-hoc approach to feature 
engineering slows model development 
and leads to duplicated effort between 
teams as well as work stream inefficiency.

Create a Feature Store, a centralized location to 
store and document feature datasets that will be 
used in building machine learning models and 
can be shared across projects and teams



Read the book (Nov 2020)
https://bit.ly/ml-design-patterns

Follow me on Twitter:
@lak_gcp

Read my blog:
https://medium.com/@lakshmanok

Check out implementations:
https://github.com/GoogleCloudPlatform/ml-design-patterns

https://medium.com/@lakshmanok
https://github.com/GoogleCloudPlatform/ml-design-patterns

