

# IPv6 基本概念

在上世紀末業界曾經擔心 IPv4 位址可能會不夠使用,雖然後來利用無等級式定址 (classless addressing)、NAT (Network Address Translation)等技術暫時解決 了問題,然而提供更多位址、效率更好、安全性更佳的 IPv6 正逐漸的被採用中。

A-1 IPv6 位址的語法

A-2 IPv6 位址的分類

A-3 IPv6 位址的自動設定



# A-1 IPv6 位址的語法

IPv4 位址一共佔用 32 個位元,它被分為 4 個區塊,每個區塊佔用 8 個位元,區塊之間利用句點(.)隔開,然後以十進位來表示每個區塊內的數值,例如 192.168.1.31。

IPv6 位址則是佔用 128 個位元,它被分為 8 個區塊,每個區塊佔用 16 個位元,區塊之間利用冒號(:)隔開,然後以十六進位來表示每個區塊內的數值。由於每個區塊佔用 16 個位元,因此每個區塊共有 4 個十六進位的數值,舉例來說,假設 IPv6 位址的二進位表示法為(128 位元):

則其 IPv6 位址的十六進位表示法為(參考圖 A-1-1):

2001:0000:4136:E38C:14D9:1225:3F57:F759

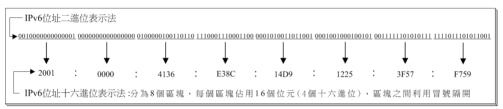



圖 A-1-1

# 前導0可以省略

為了簡化 IPv6 位址的表示方式,因此可以省略某些數字為 0 的部分,例如在圖 A-1-2 中的 IPv6 位址 21DA:00D4:0000:E38C:03AC:1225:F570:F759 可以被改寫為 21DA:D4:0:E38C:3AC:1225:F570:F759,其中的 00D4 被改寫為 D4、0000 被改寫 為 0、03AC 被改寫為 3AC。

區塊中只有靠左邊的 0 可以被省略,而靠右邊或中間的 0 不可以省略,例如 F570 不可以改寫為 F57。



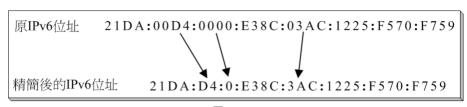



圖 A-1-2

### 連續的0區塊可以縮寫

如果有連續數個區塊都是 0 的話,則可以改用雙冒號(::)來代表這些連續區塊, 例如圖 A-1-3 中的 IPv6 位址 FE80:0:0:0:10DF:D9F4:DE2D:369B 可以被縮寫為 FE80::10DF:D9F4:DE2D:369B。



圖 A-1-3

此範例將其中連續 3 個為 0 的區塊改用雙冒號來表示。注意在一個 IPv6 位址中,這種縮寫方式只能夠使用一次,例如圖 A-1-4 的位址 FE80:0:0:0:10DF:0:0:369B 中有兩個連續 0 區塊(0:0:0 與 0:0),則您可以將其中的 0:0:0 或 0:0 縮寫,也就是此位址可用以下方式來表示:

FE80::10DF:0:0:369B 或 FE80:0:0:0:10DF::369B

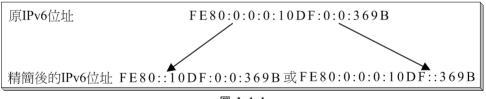



圖 A-1-4

但不可以同時將 0:0:0 與 0:0 都縮寫,也就是此位址不可寫成 FE80::10DF::369B,因為如此將無法判斷其中兩個雙冒號::各自代表著多少個 0 區塊。



# IPv6 的首碼 (prefix)

首碼是 IPv6 位址的一部分,用來表示 IP 位址中某些位元是固定的值,或用來反應 其所代表的子網路,其首碼的表示方式與 IPv4 的 CIDR 表示方式相同。IPv6 首碼 的表示法為「位址/首碼長度」,例如 21DA:D3:0:2F3B::/64 就是一個 IPv6 位址的 首碼表示法,它表示 IPv6 位址中最左邊 64 個位元固定為 21DA:D3:0:2F3B。IPv4 內所使用的子網路遮罩,在 IPv6 內已經不支援。

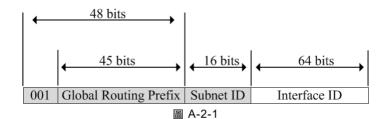
# A-2 IPv6 位址的分類

IPv6 支援三種類型的位址,它們分別是 unicast 位址(單點傳播位址)、multicast 位址(多點傳播位址)與 anycast 位址(任一傳播位址)。表 A-2-1 列出 IPv4 位址與其所相對應的 IPv6 位址。

| IPv4 位址                                                      | IPv6 位址                                                |
|--------------------------------------------------------------|--------------------------------------------------------|
| 網際網路位址等級式分類                                                  | 不分等級                                                   |
| Public IP 位址                                                 | Global unicast 位址                                      |
| Private IP 位址(10.0.0.0/8、<br>172.16.0.0/12 與 192.168.0.0/16) | Site-local 位址(FEC0::/10)或<br>Unique Local 位址(FD00::/8) |
| APIPA 自動設定的 IP 位址<br>(169.254.0.0/16)                        | Link-local 位址(FE80::/64)                               |
| Loopback 位址為 127.0.0.1                                       | Loopback 位址為::1                                        |
| 未指定位址為 0.0.0.0                                               | 未指定位址為::                                               |
| 廣播位址                                                         | 不支援廣播                                                  |
| 多點傳播位址(224.0.0.0/4)                                          | IPv6 多點傳播位址(FF00::/8)                                  |

表 A-2-1

# Unicast 位址(單點傳播位址)


Unicast 位址用來代表單一網路介面,例如每一片網路卡可以有一個 unicast 位址。 當封包的傳送目的地是 unicast 位址時,該封包將被送到擁有此 unicast 位址的網 路介面(節點)。IPv6的 unicast 位址包含以下六種類型:



- ▶ Global unicast 位址
- ▶ Link-local 位址
- ▶ Site-local 位址
- ▶ Unique Local 位址
- ▶ 特殊位址
- ▶ 相容位址

#### Global unicast 位址(全域單點傳播位址)

IPv6 的 global unicast 位址相當於 IPv4 的 public IP 位址,它們可以被路由器來路由到網際網路,因此使用 global unicast 位址的主機可以連上網際網路。圖 A-2-1 為 global unicast 位址的結構圖,它包含以下四個欄位:



- ▶ 最左邊 3 個位元固定為 001。目前指派給 global unicast 位址的首碼為 **2000**::/3, 其最左邊 4 個十六進位值的範圍從 2000 到 3FFF。
- ▶ Global Routing Prefix (全域路由首碼)是企業網路內的站台(site)的路由首碼,類似於 IPv4的網路識別碼(network ID)。3個固定為001的首碼加上45個位元的 Global Routing Prefix,一共48個位元被用來指派給企業內的站台,網際網路的 IPv6路由器在接收到首碼符合這48個位元格式的封包時,會將此封包路由到擁有此首碼的站台(site)。
- ▶ Subnet ID (子網路識別碼)用來區分站台(site)內的子網路,透過這個16位元的 Subnet ID,可以讓企業在一個站台內建立最多2<sup>16</sup>=65536個子網路。

- ▶ Interface ID(介面識別碼)用來表示子網路內的一個網路介面(例如網路卡), 它相當於 IPv4 的主機識別碼(host ID)。Interface ID可以透過以下兩種方式 之一來產生:
  - 根據網路卡的 MAC 位址來產生 Interface ID: 如圖 A-2-2 中的 1 號箭頭所示,首先將 MAC 位址(實體位址)轉換成標準的 EUI-64(Extended Unique Identifier-64)位址,然後再修改此 EUI-64位址,也就是如 2 號箭頭所示將圖中的 0 改為 1(此位元在標準的 IEEE 802網路卡中為 0),最後將這個修改過後的 EUI-64位址當作 IPv6的 Interface ID。Windows Server 2003與Windows XP所自動設定的 IPv6位址,預設是採用此方式。

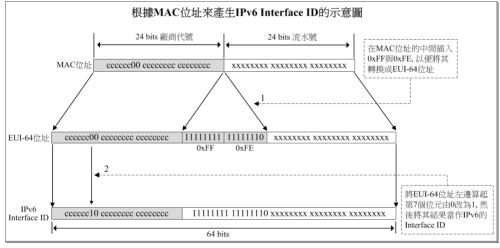



圖 A-2-2

■ **亂數產生 Interface ID**:用戶端系統從 Windows Vista 開始、伺服器系統從 Widows Server 2008 開始,其所自動設定的 IPv6 位址,預設是採用此方式。

### Link-local 位址(連結-本機位址)

擁有 link-local 位址的節點使用此位址來與同一**連結**(link)上的鄰近節點溝通。 IPv6 節點(例如 Windows Server 2022 電腦)會自動設定其 link-local 位址。



何謂節點(node)?任何一個可以擁有 IP 位址的裝置都可稱為節點,例如電腦、印表機、路由器等。一個站台(site)內包含著一或多個子網路,這些子網路之間透過路由器等設備串接在一起。每一個子網路內包含著多個節點,這些節點透過網路介面(network interface,例如網路卡)連接在這個子網路上,也就是說這些節點是在同一個**連結**(link)上。

Link-local 位址相當於 IPv4 中利用 Automatic Private IP Addressing 機制(APIPA)取得的 IP 位址 169.254.0.0/16。IPv6 節點會自動設定其 link-local 位址。Link-local 位址的使用範圍僅限該節點所連接的區域連結(local link)之內,也就是只能夠與同一個連結內的節點溝通。圖 A-2-3 為 link-local 位址的結構圖。

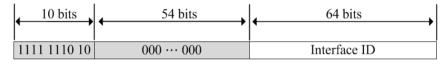



圖 A-2-3

Link-local 位址以 FE80 開頭,其首碼為 FE80::/64。目的地為 link-local 位址的封包,不會被路由器傳送到區域連結之外的其他連結。圖 A-2-4 最下方箭頭所指就是 link-local 位址,執行 netsh interface ipv6 show address 指令可得到此畫面(其中的 Teredo 位址與 ISATAP 位址請參考後面的說明來設定後才看得到)。

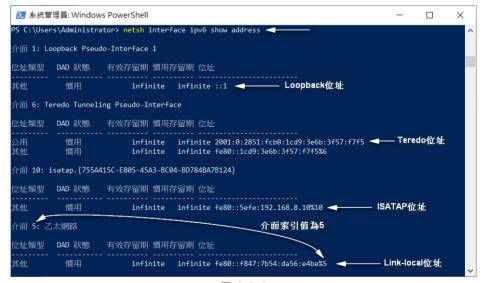



圖 A-2-4



圖中 link-local 位址(以 FE80::開頭)結尾%後面的數字 5 是網路介面索引值(interface index),為何需要介面索引值呢?因為 link-local 位址(與 Site-local 位址)的前置碼可以重複使用,也就是站台內的所有連結都可以使用相同的前置碼(因此位於不同連結內的節點,其 link-local 位址也可以相同),這會造成使用上的混淆。例如圖 A-2-5 中的伺服器擁有兩張網路卡,分別連接到連結 1 與連結 2 ,同時連結 1 內有一台電腦、連結 2 內有兩台電腦。圖中 IPv6 位址都是 link-local 位址(其中連結 1 內的電腦 1 與連結 2 內的電腦 2 的 link-local 位址相同),此時若您要在伺服器上利用 ping 指令來與連接 2 內的電腦 2 溝通時,此封包應該要透過網路卡 2 來送出,但是您要如何讓這台伺服將封包從這一片網路卡送出呢?此時您可以在 ping 指令後面加上此片網路卡的介面索引值(圖中的值為 12)來解決問題,例如 Ping FE80::10DF:D9F4:DE2D:3691%12。

上述指令表示此伺服器要透過介面索引值為 12 的網路卡 2(位於連結 2)來將封包送出。若將此 ping 指令最後的介面索引值改為 11 的話,則封包會透過網路卡 1(位於連結 1)來傳送給電腦 1。

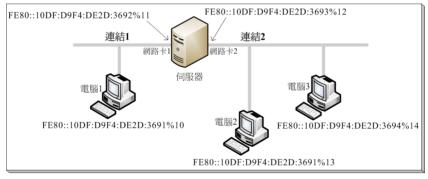



圖 A-2-5

每一台Windows主機都會各自設定自己的介面索引值,因此同一個連結內的電腦, 其介面索引值可能都不相同。其實%之後的數字應該稱為 zone ID (又稱為 scope ID)。若是 link-local 位址的話,此 zone ID 就是介面索引值;若是 site-local 位址的話,zone ID 就是 site ID。

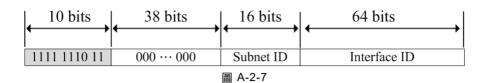
同理,每一台主機也可能有多個網路介面分別連接到不同的站台(site ),因此也需透過 zone ID 來區分(此時它被稱為 site ID )。若您的主機只連接到 1 個站台,則其預設的 site ID 為 1。



您也可以如圖 A-2-6 所示利用 ipconfig 或 ipconfig /all 來得到一些 IPv6 的相關資訊(或利用 PowerShell 指令 Get-NetIPAddress -AddressFamily IPv6)。

```
ጆ 系統管理員: Windows PowerShell
                                                                  X
PS C:\Users\Administrator> ipconfig <-
Windows IP 設定
乙太網路卡 乙太網路:
  連線特定 DNS 尾碼 . . . . . .
  連結-本機 IPv6 位址 . . . . . . . : fe80::f847:7b54:da56:e4be%5 ◀─── Link-local位址
  IPv4 位址 . . . . . . . . . . : 192.168.8.10
  預設閘道 . . . . . . . . . . . . . . . . 192.168.8.254
通道介面卡 isatap.{755A415C-E805-45A3-BC04-BD784BA7B124}:
  連線特定 DNS 尾碼 . . . . . . . . . .
  連結-本機 IPv6 位址 . . . . . . : fe80::5efe:192.168.8.10%10 ◀── ISATAP位址
通道介面卡 Teredo Tunneling Pseudo-Interface:
  連線特定 DNS 尾碼 . . . . . . . . . .
  預設閘道 . . . . . . . . . . . . : ::
 C:\Users\Administrator>
```

圖 A-2-6

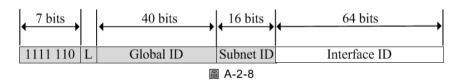

### Site-local 位址(站台-本機位址)

Site-local 位址相當於 IPv4 中的 private IP 位址(10.0.0.0/8、172.16.0.0/12 與192.168.0.0/16),site-local 位址的使用範圍是該節點所連結的站台(local site)之內,也就是用來與同一站台(內含一或多個子網路)內的節點溝通。路由器不會將使用 site-local 位址的封包轉送到其他站台,因此一個站台內的節點無法使用 site-local 位址來與其他站台內的節點溝通。

不像 IPv6 節點會自動設定其 link-local 位址, site-local 位址必須透過路由器、 DHCPv6 伺服器或手動來設定。

圖 A-2-7 為 site-local 位址的結構圖。Site-local 位址的首碼佔用 10 個位元,其首碼為 FECO::/10。每一個站台可以透過佔用 16 位元的 Subnet ID 來劃分子網路。 IPv6 路由器在收到目的地為 site-local 位址的封包時,並不會將其路由到區域站台 (local site) 之外的其他站台。








RFC3879 內不建議在新建置的 IPv6 網路使用 Site-local 位址,但現有 IPv6 環境可以繼續使用 Site-local 位址。建議改採用接下來要介紹的 **Unique Local 位址**來取代 Site-local 位址。

#### Unique Local 位址(唯一的本機位址)

Unique Local 位址是用來取代 Site-local 位址,它相當於 IPv4 中的 private IP 位址(10.0.0.0/8、172.16.0.0/12 與 192.168.0.0/16)。圖 A-2-8 為 Unique Local 位址的結構圖,其首碼為 FC00::/7,其中 L(Local)旗標值為 1表示它是一個 local 位址(L为 0 供未來使用),因此將其設定為 1後的 Unique Local 位址首碼為 FD00::/8。其中的 Global ID 用來區別企業內的每一個站台,它是佔用 40 個位元的隨機值。Subnet ID(子網路識別碼)用來區分站台內的子網路,透過這個 16 位元的 Subnet ID,可以讓企業在一個站台內建立最多 65536 個子網路。



不像 IPv6 節點會自動設定其 link-local 位址, Unique Local 位址必須透過路由器、DHCPv6 伺服器或手動來設定。

#### 特殊位址

以下是兩個特殊的 IPv6 位址:

▶ 未指定位址(unspecified address):它就是 0:0:0:0:0:0:0:0 或::,相當於 IPv4的 0:0:0:0, 此位址並不會被指定給網路介面,也不會被當作封包的傳送目的位址。當節點要確認其網路介面所獲得的暫時位址(tentative address)是否唯一時,其所送出的確認封包內的來源位址就是使用未指定位址。



▶ **迴路位址(loopback address)**: 它就是 0:0:0:0:0:0:0:1 或::1(參閱前面圖 A-2-4 中的範例),相當於 IPv4 的 127.0.0.1。您可透過迴路位址來執行迴路測試 (loopback test),以便檢查網路卡與驅動程式是否可以正常運作。送到此位址 的封包並不會被傳送到連結(link)上。

#### 相容位址與自動通道

目前大多數網路是使用 IPv4, 而要將這些網路轉移到 IPv6 是一個漫長與深具挑戰的工作, 為了讓轉移工作能夠更順利, 因此 IPv6 提供了數個自動通道技術 (automatic tunneling technology) 與相容位址來協助從 IPv4 轉移到 IPv6。

自動通道不需手動建立,而是由系統自動建立。如圖 A-2-9 所示,兩台同時支援 IPv6 與 IPv4 的主機如果要利用 IPv6 來溝通的話,由於它們之間的網路為 IPv4 的 架構,此網路無法傳送 IPv6 封包,此時可以在兩台主機之間透過通道來傳送 IPv6 封包,也就是將 IPv6 封包封裝到 IPv4 封包內,然後透過 IPv4 網路來傳送。

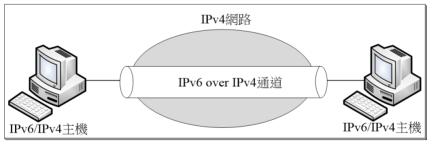



圖 A-2-9

IPv6 支援多個相容位址,以便通道兩端的主機或路由器可以利用這些位址來溝通:

▶ ISATAP 位址: ISATAP (Intra-Site Automatic Tunnel Addressing Protocol) 位址是主機-主機、主機-路由器、路由器-主機之間透過通道溝通時所使用的 IPv6 位址,它讓兩台同時支援 IPv6 與 IPv4 的主機之間可以在 IPv4 區域網路上利用 IPv6 來溝通。

ISATAP 位址的 Interface ID 格式為::0:5EFE:w.x.y.z, 其中 w.x.y.z 為 unicast IPv4 位址( public 或 private )。任何一個可用在 unicast 位址的 64 位元首碼,都可以當作是 ISATAP 位址的首碼,例如 FE80::5EFE:192.168.8.128 就是一

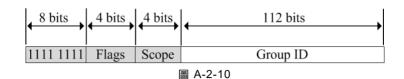


個 link-local ISATAP 位址。擁有 link-local ISATAP 位址的兩台主機,可以各 自利用其 ISATAP 位址來透過 IPv4 網路溝通。

可參閱前面圖 A-2-4 中的範例,圖中的 ISATAP 位址,是先執行 PowerShell 指令 Set-NetIsatapConfiguration -state enabled 指令後才有的結果。您也可以利用 Get-NetIsatapConfiguration 來查看 ISATAP 的狀態或 Get-NetIPAddress -AddressFamily IPv6 來查看所有的 IPv6 狀態。

- ▶ 6to4 位址: 6to4 位址是路由器-路由器、主機-路由器、路由器-主機之間透過通 道溝通時所使用的 IPv6 位址,它讓 IPv6 主機或路由器可以透過 IPv4 網際網路 來連接。6to4 位址是屬於 global unicast 位址,其首碼為 2002:wwxx:yyzz::/48, 其中的 wwxx:yyzz 擷取自 unicast public IPv4 位址(w.x.y.z)。
- ▶ **Teredo 位址**:若一台同時支援 IPv6 與 IPv4 的主機是位於 IPv4 的 NAT 之後, 則當它要在 IPv4 網際網路上使用 IPv6 時,就可以使用 Teredo 位址,其首碼為 **2001**::/32。

可參閱前面圖 A-2-4 中的範例,圖中的 Teredo 位址,是先執行 PowerShell 指令 Set-NetTeredoConfiguration -Type Enterpriseclient 指令後才有的結果。您也可以利用 Get-NetTeredoConfiguration 指令來查看 Teredo 的狀態。


▶ **IPv4-compatible 位址**:兩台同時支援 IPv6 與 IPv4 的主機要相互利用 IPv6 溝通時,若它們之間需要經過使用 public 位址的 IPv4 網路的話,就可以使用 IPv4-compatible 位址來透過自動通道溝通。

IPv4-compatible 位址的格式為 **0:0:0:0:0:0:w.x.y.z** 或::w.x.y.z,其中的 w.x.y.z 為 unicast IPv4 位址(public),例如某台主機的 IPv4 位址為 140.115.8.1,則 其 IPv4-compatible 位址為 **0:0:0:0:0:0:140.115.8.1** 或::140.115.8.1。

## Multicast 位址(多點傳播位址)

IPv6 的 multicast 位址與 IPv4 一樣是用來代表一群網路介面,也就是多個節點可以加入到同一個 multicast 群組內,它們都可以透過共同的 multicast 位址來接聽 multicast 要求。一個節點也可加入多個 multicast 群組,也就是它可同時透過多個 multicast 位址來接聽 multicast 的流量。圖 A-2-10 為 multicast 位址的結構圖。





- ▶ 其最高 8 個位元固定為 11111111, 也就是十六進位的 FF。
- ▶ Flags:若被設定為 0000,表示它是由 IANA (Internet Assigned Numbers Authority)固定指派給 well-known multicast 的位址;若被設定為 0001 的話,表示它是尚未被 IANA 固定指派使用的暫時 multicast 位址。
- ▶ Scope: 用來表示此 multicast 位址可傳送的範圍,當路由器收到 multicast 位址的封包時,它可以根據 scope 來決定是否要路由此封包。Scope 最常見的值為 1 (表示 node-local scope,其傳送範圍為節點自己)、2 (表示 link-local scope,其傳送範圍為區域連結)與 5 (表示 site-local,其傳送範圍為區域站台),例如若路由器收到一個要傳送到 FF02::2 的封包時,由於其傳送範圍為 link-local,因此路由器並不會將此封包傳送到超出此區域連結 (local link)以外的連結。
- ▶ Group ID:用來代表此群組的唯一群組識別碼,它佔用 112 個位元。

從 FF01::到 FF0F::是保留位址,例如(其中最右邊的 **Group ID** 值為 1 表示所有 節點、為 2 表示所有路由器):

- ▶ FF01::1(封包的目的地為節點自己)
- ▶ FF02::1(封包的目的地為區域連結內的所有節點)
- ▶ FF01::2(封包的目的地為路由器自己)
- ▶ FF02::2(封包的目的地為區域連結內的所有路由器)
- ▶ FF05::2(封包的目的地為區域站台內的所有路由器)

#### Solicited-node multicast 位址

在 IPv4 中是利用 ARP request 來執行 IP 位址解析工作,由於它是 MAC-level 的 廣播封包,因此會干擾到網路區段內的所有節點。在 IPv6 中它是透過送出 Neighbor Solicitation 訊息來執行 IP 位址解析工作,而且為了減少對連結內所有 節點的干擾,它採用了 solicited-node multicast 位址(請求節點多點傳播位址),



此位址是從網路介面的 unicast 位址轉換而來的,如圖 A-2-11 所示,其首碼為 FF02::1:FF00:0/104,最後的 24 個位元是擷取自 unicast 位址的 Interface ID 的最 右邊 24 個位元。



IPv6 不再使用廣播位址,所有原先在 IPv4 中使用廣播位址的方式,在 IPv6 中都改採用 multicast 位址。

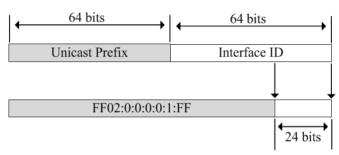



圖 A-2-11

舉 例 來 說 , 假 設 某 台 主 機 的 網 路 介 面 的 IPv6 link-local 位 址 為 FE80::10DF:D9F4:DE2D:369B,由於其最右邊 24 個位元為 2D:369B,故其 solicited-node multicast 位址為 FE02::1:FF2D:369B,該主機會登記其擁有此位址, 並透過此位址來接聽 IP 位址解析要求(解析鏈結層的位址,以 Ethernet 網路來說 就是 MAC 位址)。

# Anycast 位址(任一傳播位址)

Anycast 位址跟 multicast 位址一樣可以被指派給多個網路節點,但是送到 anycast 位址的封包,並不是被傳送到擁有此 anycast 位址的所有節點,而是只會被傳送到其中的一個節點,它是距離最近的節點(指路由距離)。

Anycast 位址目前只能夠用在封包的目的地位址,而且只能夠指派給路由器來使用。 Anycast 位址並沒有自己專屬的 IPv6 格式,它是使用 unicast 位址的格式,但是在 指派 Anycast 位址給路由器來使用時,必須聲明其為 Anycast 位址。



目前有被定義的 Anycast 位址為:**Subnet-Router anycast 位址**,它是路由器必須支援的位址,傳送給 Subnet-Router anycast 的封包,會被傳送到該子網路中的一個路由器。用戶端可以透過傳送 Subnet-Router anycast 封包來找尋路由器。

Subnet-Router anycast 位址的格式如圖 A-2-12 所示,其中 subnet prefix 取自網路 介面所在的連結 (link) 的首碼,其長度視不同的 unicast 位址而有所不同,後面剩下的位元都是 0。



# A-3 IPv6 位址的自動設定

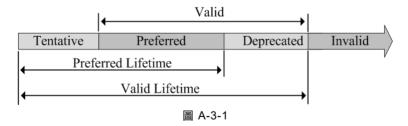
IPv6 最好用的功能之一就是 IPv6 主機能夠自動設定自己的 IPv6 位址,而且可以不需要透過 DHCPv6 通訊協定的協助。

### 自動設定 IPv6 位址的方法

IPv6 主機預設會自動替其每一個網路介面設定一個 link-local 位址,除此之外,若 IPv6 主機能夠找到路由器的話,還可以根據路由器的設定來獲得更多的 IPv6 位址 與選項,然後利用這些位址來連接網際網路(如果是 global 位址的話)或連接同一個站台內的其他子網路(如果是 site-local 或 Unique Local 位址的話)。IPv6 主機是透過送出 Router Solicitation 訊息來尋找路由器,路由器會回應 Router Advertisement 訊息,此訊息內包含著以下資訊:

- ▶ 一或多個額外的首碼: IPv6 主機會根據這些額外的首碼(可能是 global 或 local 首碼)來另外建立一或多個 IPv6 位址。
- ▶ Managed Address Configuration (M)旗標:若此旗標被設定為1的話,表示要使用 DHCPv6 來取得 IPv6 位址。
- ▶ Other Stateful Configuration (O)旗標:若此旗標被設定為1的話,表示要使用 DHCPv6來取得其他選項,例如 DNS 伺服器的 IPv6 位址。




若路由器所傳回的資訊內包含一或多個首碼的話,則 IPv6 主機除了會根據這些首碼來建立一或多個 IPv6 位址之外,還會根據 M 與 O 旗標來決定其他 IPv6 位址與 選項。 M 與 O 旗標有著以下的排列組合:

- ▶ **M=0 & O=0**: IPv6 主機僅會根據路由器所傳來的首碼來建立一或多個 IPv6 位址,此時需透過其他方式來設定選項(例如手動輸入)。
- ▶ M=0 & O=1: IPv6 主機根據路由器所傳來的首碼來建立一或多個 IPv6 位址、另外會透過 DHCPv6 來取得選項。
- ▶ **M=1 & O=0**: IPv6 主機會透過 DHCPv6 來取得其他 IPv6 位址,此時需透過其他方式來設定選項(例如手動輸入)。
- ▶ M=1 & O=1: IPv6 主機會透過 DHCPv6 來取得其他的 IPv6 位址與選項。

若 IPv6 主機是根據路由器傳過來的首碼來建立一或多個 IPv6 位址的話,則此狀況 被稱為無狀態位址自動設定 (stateless address autoconfiguration);若 IPv6 主機是透過 DHCPv6 來取得其他 IPv6 位址的話,則此狀況被稱為**有狀態位址自動設定** (stateful address autoconfiguration)。

### 自動設定的 IPv6 位址的狀態分類

不論是 IPv6 主機自動設定的 link-local 位址、或利用路由器傳回的首碼所建立的 global 或 local 位址、還是透過 DHCPv6 取得的任何一個 IPv6 位址,這些 IP 位址 在不同的時機有著不同狀態,如圖 A-3-1 所示:



▶ Tentative (暫時性):當產生一個新的 IPv6 位址時,它是處於 tentative (暫時性)狀態,此時 IPv6 主機會透過送出 Neighbor Solicitation 訊息來執行 DAD (Duplicate Address Detection,重複位址偵測)程序,以便偵測此位址是否已經



被重複使用,如果 IPv6 主機收到 Neighbor Advertisement 回應訊息,表示此位址已經被重複使用。

- ▶ Preferred (慣用):若確認了此 IP 位址的唯一性 (IPv6 主機未收到 Neighbor Advertisement 回應訊息),就將此位址的狀態改為 Preferred (參見圖 A-3-2 中的"慣用"),而從現在開始它就是一個有效的 (valid) IPv6 位址, IPv6 主機可以利用此位址來接收與傳送封包。
- ▶ **Deprecated(已過時)**:一個狀態為 Preferred 的 IPv6 位址有一定的使用期限,期限過後,其狀態就會被改為 Deprecated,它還是一個有效的位址,現有的連線可以繼續使用 Deprecated 位址,不過新的連線不應該使用 Deprecated 位址。
- ▶ **Invalid(無效的)**:處於 Deprecated 狀態的位址在經過一段時間後就會變成無效的(invalid)位址,此時就不可以再透過此位址來接收與傳送封包。

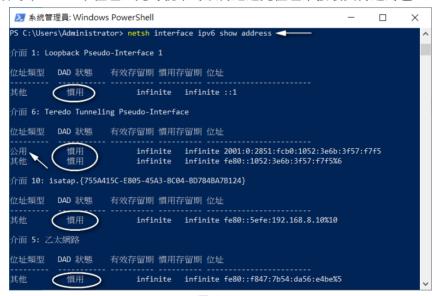



圖 A-3-2

另外圖中最左邊有個**位址類型**欄位出現**公用**(Public)這個字眼,這是因為 IPv6的 位址又可以被分類為**公用、臨時**與**其他**位址。其中公用與臨時位址的說明如下:

▶ 公用 IPv6 位址:它是一個 global 位址,主要用來接收連入連線(incoming connection),例如用在網站,這個位址應該要在 DNS 伺服器內登記。公用 IPv6 位址的 interface ID 可以是 EUI-64 位址或利用亂數產生。



▶ 臨時 IPv6 位址:此位址主要是用戶端應用程式在啟始連線時使用,例如網頁 瀏覽器就可以使用此位址來對外連接網站,這個位址不需要在 DNS 伺服器內 登記。臨時 IPv6 位址的 interface ID 是亂數產生,這是為了安全上的考量,因 為是亂數產生的,故每次 IPv6 通訊協定啟動時,其 IPv6 位址都不一樣,如此 可避免使用者的上網行為被追蹤。

為了安全起見,用戶端系統從 Windows Vista 開始、伺服器系統從 Widows Server 2008 開始,預設是利用亂數來建立 Interface ID,而不是用 EUI-64。

您可以利用 PowerShell 指令 **Get-NetIPv6Protocol** 來檢視目前系統是否利用亂數來產生 interface ID,如圖 A-3-3 所示為已經啟用。

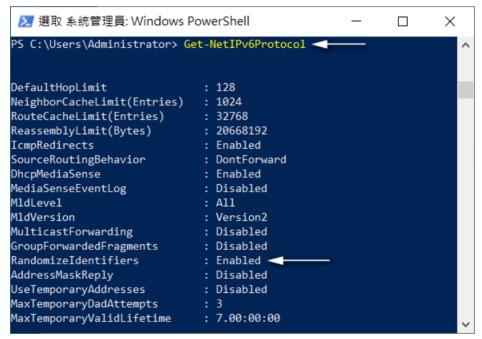



圖 A-3-3

您可以透過以下指今來停用亂數產生 Interface ID:

#### Set-NetIPv6Protocol -Randomizeidentifiers disabled

或是透過以下指令來啟用亂數產生 Interface ID:

Set-NetIPv6Protocol -Randomizeidentifiers enabled