
C++ Primer, Fifth Edition
Pre GCC 4.7.0

Code Distribution README

Barbara E. Moo
bmoo@att.net

August 16, 2012

Overview

This distribution contains the source code of all the complete programs and
many of the program fragments from C++ Primer. The code in this distribution
has been edited to work with pre C++11 GNU compilers. We tested this code
using the GCC 4.5.3 compiler, but it should work with earlier versions of the
compiler as well. Please see CompilerNotes.pdf in this directory for more
information on the missing features and workarounds.

Building Executables

The code is divided into 19 subdirectories corresponding to the Chapters in
C++ Primer. Each subdirectory contains a makefile that makes the source in that
directory. These makefiles rely on the file named GNU makefile template in
the top-level directory. The makefiles are fairly simple and we have provided
comments in the hope that even those who are not familiar with makefiles can
understand how to compile these programs by hand if so desired.

The top level directory also has its own makefile that will make the entire
source tree. The top level makefile also has targets clean and clobber to
remove the object files or object and executable files respectively.

To use make on most UNIX based operating systems you invoke the com-
mand named make:

UNIX machines
$ make # compiles all the programs
$ make clean # removes all the object files and stackdumps
$ make clobber # removes executable, object and stackdump files

Input and Output

The code in these subdirectories includes all of the complete programs covered
in C++ Primer.

In addition, we include executable versions of some of the otherwise in-
complete program fragments. In general, such programs print details about
the internal state of the program. To understand the output, you will have to
understand the program. This is intentional.

The input, if any, to these programs varies:

• Some programs print a prompt and wait for input on the standard input

1

mailto:bmoo@att.net

• Other programs read the standard input but do not print a prompt

• Others take one or more arguments specifying a file name to read

• Yet others take a file name argument and read the standard input

Each Chapter subdirectory contains a README that explains the input, if any,
expected by each executable file.

Sample Data Files

For those programs that expect input, we have provided small, sample input
files. Input files are always found in a subdirectory named data. For example,
the program add_item in directory 1 reads Sales_item transactions from
the standard input but does not prompt for input. If the program is invoked:

add_item

it will wait for input, which you can provide by typing appropriate transac-
tions. Alternatively, you can pass the data file we provide. Assuming the fol-
lowing is executed in the directory named 1 writing

add_item < data/add_item # UNIX

will bind the standard input to the add_item file in the data subdirectory
and will execute the program add_item on the data in that file.

Some of the programs take argument(s) that must be supplied when the
program is executed. These programs will fail if they are invoked with no
argument. For example, the word_transform program in the Chapter 11
directory requires two input files. You might invoke this program as follows:

word_transform takes two files, samples are in the data directory
this execution uses the file data/rules to transform the text in data/text
word_transform data/rules data/text # UNIX

See Section 1.1.1 for a description of how C++ programs are run, page 22 for
how files are bound to the standard input and standard output, and Section
6.2.5 for how arguments are passed to a C++ program.

Running the Programs

Each directory contains a simple shell script named runpgms that runs the
executables made in that directory.

Note that on some systems, the default setting for the PATH variable does
not include the current directory. In this case, if you try to execute

add_item < data/add_item # UNIX

the add_item program will not be found. Instead, you must write

./add_item < data/add_item # UNIX

where ./tells the system to run the add_item program in the current direc-
tory.

2

