Chapter 24 Check Point Questions
24.1 Suppose list is an instance of MyList, can you get an iterator for list using list.iterator()?
Yes. Because MyList extends Iterable.
Hide Answer
24.2 Can you create a list using new MyAbstractList() ?
No. Because MyAbstractList is abstract.
Hide Answer
24.3 What methods in MyList are overridden in MyAbstractList?
The methods add(E), isEmpty(), size(), remove(E) are overridden in AbstractList.
Hide Answer
24.4 What are the benefits of defining both the MyList interface and the MyAbstractList class?
For generic programming.
Hide Answer
24.5 What are the limitations of the array data type?
An array is a fixed-size data structure. Once an array is created, its size cannot be changed.
Hide Answer
24.6 MyArrayList is implemented using an array, and an array is a fixed-size data structure. Why is MyArrayList considered a dynamic data structure?
MyArrayList is implemented using an array and an array is a fixed-size data structure. But MyArrayList is considered as a dynamic data structure, because its storage size changes behind the scene and hidden from the user.
Hide Answer
24.7 Show the length of the array in MyArrayList after each of the following statements is executed.
 1 MyArrayList<Double> list = new MyArrayList<>();
 2 list.add(1.5);
 3 list.trimToSize();
 4 list.add(3.4);
 5 list.add(7.4);
 6 list.add(17.4);
After line 1, listâ€™s length is 16. After line 2, listâ€™s length is 16. After line 3, listâ€™s length is 1. After line 4, listâ€™s length is 3. After line 5, listâ€™s length is 3. After line 6, listâ€™s length is 7.
Hide Answer
24.8 What is wrong if lines 11â€“12 in Listing 24.3, MyArrayList.java,
 for (int i = 0; i < objects.length; i++)
 add(objects[i]);
are replaced by
super(objects);
or
data = objects;
size = objects.length;
If
for (int i = 0; i < objects.length; i++)
 add(objects[i]);
are replaced by
super(objects);
When constructing an ArrayList using new ArrayList(objects), the super classâ€™ constructor is invoked first to add element in objects to data. However, data has not been initialized yet. data will be initialized after the body of the superclassâ€™ constructor is executed. So you will get a NullPointerException when attempting to add an element to data. See Supplement III.I, â€œInitialization Block,â€� for reference.If
for (int i = 0; i < objects.length; i++)
 add(objects[i]);
are replaced by
data = objects;
size = objects.length;
Then data and objects refer to the same array. This is a security hole. You may change ArrayList by directing changing the array elements through objects.
Hide Answer
24.9 If you change the code in line 33 in Listing 24.3, MyArrayList.java, from
E[] newData = (E[])(new Object[size * 2 + 1]);
to
E[] newData = (E[])(new Object[size * 2]);
the program is incorrect. Can you find the reason?
(Hint: To find the bug, perform trimToSize() on an empty list, then add a new element to the list.)When an empty array list is trimmed, its size becomes 0. If you create a new array by doubling its size, the new array size is still 0. Adding a new element now would cause an ArrayIndexOutOfBounds exception.
Hide Answer
24.10 Will the MyArrayList class have memory leak if the following code in line 41 is deleted?
data = (E[])new Object[INITIAL_CAPACITY];
Yes.
Hide Answer
24.11 The get(index) method invokes the checkIndex(index) method (lines 59â€“63 in Listing 24.3) to throw an IndexOutOfBoundsException if the index is out of bounds. Suppose the add(index, e) method is implemented as follows:
 public void add(int index, E e) {
 checkIndex(index);

 // Same as lines 17-27 in Listing 24.3 MyArrayList.java
 }
What will happen if you run the following code?
 MyArrayList<> list = new MyArrayList<>();
 list.add("New York");
list.add(e) invokes list.add(list.size(),e), which will throw an exception, because size is now 0.
Hide Answer
24.12 Both MyArrayList and MyLinkedList are used to store a list of objects. Why do we need both types of lists?
Both MyArrayList and MyLinkedList are used to store a list of objects. Why do we need two? MyLinkedList is more efficient for deletion and insertion at the beginning of the list. MyArrayList is more efficient for all other operations.
Hide Answer
24.13 Draw a diagram to show the linked list after each of the following statements is executed.
 MyLinkedList<Double> list = new MyLinkedList<>();
 list.add(1.5);
 list.add(6.2);
 list.add(3.4);
 list.add(7.4);
 list.remove(1.5);
 list.remove(2);
Omitted.
Hide Answer
24.14 What is the time complexity of the addFirst(e) and removeFirst() methods in MyLinkedList?
O(1)
Hide Answer
24.15 Suppose you need to store a list of elements. If the number of elements in the program is fixed, what data structure should you use? If the number of elements in the program changes, what data structure should you use?
If the number of elements is fixed in the program, use array is more efficient. If the number of elements changes in the program, you may use MyArrayList or MyLinkedList.
Hide Answer
24.16 If you have to add or delete the elements at the beginning of a list, should you use MyArrayList or MyLinkedList? If most of the operations on a list involve retrieving an element at a given index, should you use MyArrayList or MyLinkedList?
If you have to add or delete the elements anywhere in a list, use MyLinkedList. If most of operations on a list involve retrieving an element at a given index, use MyArrayList.
Hide Answer
24.17 Simplify the code in lines 75-80 in Listing 24.6 using a conditional expression.
result.append((current != null) ? ", " : "]");
Hide Answer
24.18 You can use inheritance or composition to design the data structures for stacks and queues. Discuss the pros and cons of these two approaches.
Using inheritance: You can declare the stack class by extending the array list class, and the queue class by extending the linked list class. Using composition: You can declare an array list as a data field in the stack class, and a linked list as a data field in the queue class. Both designs are fine, but using composition is better because it enables you to declare a complete new stack class and queue class without inheriting the unnecessary and inappropriate methods from the array list and linked list.
Hide Answer
24.19 If LinkedList is replaced by ArrayList in lines 2â€“3 in Listing 24.7 GenericQueue.java, what will be the time complexity for the enqueue and dequeue methods?
The time complexity for enqueue will be O(1) and for dequeue will be O(n).
Hide Answer
24.20 Which lines of the following code are wrong?
 1 List<> list = new ArrayList<>();
 2 list.add("Tom");
 3 list = new LinkedList<>();
 4 list.add("Tom");
 5 list = new GenericStack<>();
 6 list.add("Tom");
Line 5 will be wrong, because GenericStack is not a subtype of MyList.
Hide Answer
24.21 What is a priority queue?
In a priority queue, elements are assigned with priorities. When accessing elements, the element with the highest priority is removed first.
Hide Answer
24.22 What are the time complexity of the enqueue, dequeue , and getSize methods in MyProrityQueue?
For enqueue and dequeue in a priority queue, the complexity is O(logn). For getSize(), the complexity is O(1).
Hide Answer
24.23 Which of the following statements are wrong?
 1 MyPriorityQueue<Object> q1 = new MyPriorityQueue<>();
 2 MyPriorityQueue<Number> q2 = new MyPriorityQueue<>();
 3 MyPriorityQueue<Integer> q3 = new MyPriorityQueue<>();
 4 MyPriorityQueue<Date> q4 = new MyPriorityQueue<>();
 5 MyPriorityQueue<> q5 = new MyPriorityQueue<>();
Lines 1 and 2 are wrong, because Object and Number donâ€™t implement Comparable.
Hide Answer
[bookmark: _GoBack]
