Chapter 22 Check Point Questions
22.1 Why is a constant factor ignored in the Big O notation? Why is a nondominating term ignored in the Big O notation? 
The constant factor is ignored in big O notation, because it has no impact on the growth rate of the time complexity function. A nondominating term is ignored in Big O notation, because as the input size grows, the dominating term grows much faster than the nondominating term.
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22.2 What is the order of each of the following functions? 
(a) (n2 + 1)2/n
(b) (n2 + log2n)2 / n
(c) n3 + 100n2 + n
(d) 2n + 100n2 + 45n 
(e) n2n + n22n                    
(a) (n2 + 1)2/n = O(n3)
(b) (n2 + log2n)2 / n = O(n3)
(c) n3 + 100n2 + n = O(n3)
(d) 2n + 100n2 + 45n = O(2n)
(e) n2n + n22n = O(n22n)                 
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22.3 Count the number of iterations in the following loops. 
    (a)
    int count = 1;
    while (count < 30) {
      count = count * 2;
    }

    (b)
    int count = 15;
    while (count < 30) {
      count = count * 3;
    }

    (c)
    int count = 1;
    while (count < n) {
      count = count * 2;
    }

    (d)
    int count = 15;
    while (count < n) {
      count = count * 3;
    }        
(A) 5 
(B) 1 
(C) The ceiling of log2n times 
(D) The ceiling of log3(n/15) times 
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22.4 How many stars are displayed in the following code if n is 10? How many if n is 20? Use the Big O notation to estimate the time complexity. 
(a)
for (int i = 0; i < n; i++) {
  System.out.print('*');
}

(b)
for (int i = 0; i < n; i++) {
  for (int j = 0; j < n; j++) {
    System.out.print('*');
  }
}

(c)
for (int k = 0; k < n; k++) {
  for (int i = 0; i < n; i++) {
    for (int j = 0; j < n; j++) {
      System.out.print('*');
    }
  }
}

(d)
for (int k = 0; k < 10; k++) {
  for (int i = 0; i < n; i++) {
    for (int j = 0; j < n; j++) {
      System.out.print('*');
    }
  }
}
if n is 10: (a) 10 (b) 10^2 (c) 10^3 (d) 10*10^2 
if n is 20: (a) 20 (b) 20^2 (c) 20^3 (d) 20*20^2 
Using Big-O notation: O(n), O(n^2), O(n^3), O(n^2)
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22.5 Use the Big O notation to estimate the time complexity of the following methods: 
(a)
public static void mA(int n) {   
  for (int i = 0; i < n; i++) {
    System.out.print(Math.random());
  }
}

(b)
public static void mB(int n) {   
  for (int i = 0; i < n; i++) {
    for (int j = 0; j < i; j++)
      System.out.print(Math.random());
  }
}

(c)
public static void mC(int[] m) {   
  for (int i = 0; i < m.length; i++) {
    System.out.print(m[i]);
  }

  for (int i = m.length - 1; i >= 0; )
  {
    System.out.print(m[i]);
    i--;
  } 
}

(d)
public static void mD(int[] m) {   
  for (int i = 0; i < m.length; i++) {
    for (int j = 0; j < i; j++)
      System.out.print(m[i] * m[j]);
  }
}
(a): O(n) 
(b): O(n^2) 
(c): O(n) 
(d): O(n^2)
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22.6 Design an O(n) time algorithm for computing the sum of numbers from n1 to n2 for Can you design an O(1) for performing the same task? 
An O(n) time algorithm for this is 
int sum = 0;
for (int i = n1; i <=  n2; i++)
  sum += i;
          
An O(1) time algorithm for this is
int sum = n2(n2 + 2) / 2 â€“ n1(n1 + 2) / 2;
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22.7 Example 7 in Section 22.3 assumes n = 2k Revise the algorithm for an arbitrary n and prove that the complexity is still O(logn). 
result = a;
i = 2;

while (i <=  n) {
  result = result * result;
  i *= 2;
}

for (int j = i / 2 + 1; j <=  n; j++)
  result = result * a;
Assume that 2k-1 <= n < 2k. The while loop is executed k-1 times. The for loop is executed at most 2k-2k-1=2k-1 times. So, the total complexity is O(n). Consider another implementation:
  public static int f(int a, int n) {
    if (n == 1) {
      return a; 
    } 
    else {
      int temp = f(a, n / 2);
      if (n % 2 == 0) {
        return temp * temp;
      }
      else {
        return a * temp * temp;
      }
    }  
  }
This implementation results in O(logn) complexity.
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22.8 Put the following growth functions in order: 5n3/4032, 44logn, 10nlogn, 500, 2n2, 2n/45, 3n 
500,44logn,3n,10nlogn 2n2,5n3/4032,2n/45
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22.9 Estimate the time complexity for adding two n by m matrices, and for multiplying an n by m matrix by an m by k matrix. 
Adding two matrices: O(nm). Multiplying two matrices: O(nmk)
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22.10 Describe an algorithm for finding the occurrence of the max element in an array. Analyze the complexity of the algorithm. 
The algorithm can be designed as follows: Maintain two variables, max and count. max stores the current max number, and count stores its occurrences. Initially, assign the first number to max and 1 to count. Compare each subsequent number with max. If the number is greater than max, assign it to max and reset count to 1. If the number is equal to max, increment count by 1. Since each element in the array is examined only once, the complexity of the algorithm is O(n).
Hide Answer 
22.11 Describe an algorithm for removing duplicates from an array. Analyze the complexity of the algorithm. 
The algorithm can be designed as follows: For each element in the input array, store it to a new array if it is new. If the number is already in the array, ignore it. The time for checking whether an element is already in the new array is O(n), so the complexity of the algorithm is O(n^2).
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22.12 Analyze the following sorting algorithm: 
for (int i = 0; i < list.length - 1; i++) {
  if (list[i] > list[i + 1]) {
    swap list[i] with list[i + 1];
    i = -1;
  }
}
This is similar to bubble sort. Whenever a swap is made, it goes back to the beginning of the loop. In the worst case, there will be O(n^2) of swaps. For each swap, O(n) number of comparisons may be made in the worst case. So, the total is O(n^3) in the worst case.
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22.13 Analyze the complexity for computing a polynomial f(x) of degree n for a given x value using a brute-force approach and the Hornerâ€™s approach, respectively. A brute-force approach is to compute each term in the polynomial and add them together. The Hornerâ€™s approach was introduced in Section 6.7. 
f(x) = anxn + an-1xn-1 + an-2xn-2 + ... + a1x1 + a0 
A brute-force for approach to evaluate a polynomial f(x) of degree n will take n+(n-1)+â€¦+2+1=O(n^2) time. The Hornerâ€™s method takes O(n) time.
Hide Answer 
22.14 What is dynamic programming? Give an example of dynamic programming. 
See the definition and example in the text.
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22.15 Why is the recursive Fibonacci algorithm inefficient, but the nonrecursive Fibonacci algorithm efficient? 
The recursive Fibonacci algorithm is inefficient, because the subproblems in the recursive Fibonacci algorithm overlaps, which causes redundant work. The non- recursive Fibonacci algorithm is dynamic algorithm that avoids redundant work.
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22.16 Prove that the following algorithm for finding the GCD of the two integers m and n is incorrect. 
    int gcd = 1;
    for (int k = Math.min(Math.sqrt(n), Math.sqrt(m)); k >= 1; k--) {
      if (m % k == 0 && n % k == 0) {
        gcd = k;
        break;
      }
    }
To prove this is wrong, all you need is to give a counter example to show the algorithm does not work. Try n = 64 and m = 48. The algorithm will produce the gcd 8, but the actual gcd is 16.
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22.17 Prove that if n is not prime, there must exist a prime number p such that p <= sqrt(n) and p is a factor of n. 
If n is not a prime, then there exists two number n1 and n2 such that n1 * n2 = n. Assume n1 <= n2, n1 <= srqt(n). If n1 is not a prime, you can continue the same process to find the factors of n1, until a factor is a prime.
Hide Answer 
22.18 Describe how the sieve of Eratosthenes is used to find the prime numbers. 
See the text.
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22.19 What is the divide-and-conquer approach? Give an example. 
See the definition and example in the text.
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22.20 What is the difference between divide-and-conquer and dynamic programming? 
See the text.
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22.21 Can you design an algorithm for finding the minimum element in a list using divide-and-conquer? What is the complexity of this algorithm? 
Yes. Finding the minimum in the first half and the second half of the list and return the minimum of these two. So, the time complexity is O(n) = 2 * O(n/2) + O(1) = O(n).
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22.22 What is backtracking? Give an example. 
See the definition and example in the text.
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22.23 If you generalize the Eight Queens problem to the n-Queens problem in an n-by-n chessboard, what will be the complexity of the algorithm? 
O(n!)
Hide Answer 
22.24 What is a convex hull? 
See the text.
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