Chapter 32 Check Point Questions
32.1 What are superkeys, candidate keys, and primary keys?
A superkey is an attribute or a set of attributes that uniquely identifies the relation. That is, no two tuples have the same values on the superkey. A key K is a minimal superkey, meaning that any proper subset of K is not a superkey. A relation can have several keys. In this case, each of the keys is called a candidate key. The primary key is one of the candidate keys designated by the database designer. The primary key is often used to identify tuples in a relation. You may specify a primary in the create table statement using the primary key clause.
Hide Answer
32.2 What is a foreign key?
A set of attributes FK is a foreign key in a relation R that references relation T if it satisfies the following two rules:
â€¢ The attributes in FK have the same domain as the primary key in T.
â€¢ A non-null value on FK in R must match a primary key value in T.
You may specify a foreign key in the create table statement using the foreign key clause.
Hide Answer
32.3 Can a relation have more than one primary key or foreign key?
A relation can have only one primary key, but may have multiple foreign keys.
Hide Answer
32.4 Does a foreign key need to be a primary key in the same relation?
No.
Hide Answer
32.5 Does a foreign key need to have the same name as its referenced primary key?
No, but they must have the same domain.
Hide Answer
32.6 Can a foreign key value be null?
Yes.
Hide Answer
32.7 Create the tables Course, Student, and Enrollment using the create table statements in Section 32.3.3, Creating and Dropping Tables. Insert rows into the Course, Student, and Enrollment tables using the data in Figures 32.3â€“32.5.
See http://www.cs.armstrong.edu/liang/intro10e/supplement/createsampletables_mysql.sql
Hide Answer
32.8 List all CSCI courses with at least four credit hours.
select * from Course where subjectId = 'CSCI' and numOfCredits >= 4
Hide Answer
32.9 List all students whose last names contain the letter e two times.
select * from Student where lastName like '%S%S%'
Hide Answer
32.10 List all students whose birthdays are null.
select * from Student where birthdate is null
Hide Answer
32.11 List all students who take Math courses.
select distinct firstName, lastName from Student, Enrollment, Course where Student.ssn = Enrollment.ssn and Course.courseId = Enrollment.courseId
Hide Answer
32.12 List the number of courses in each subject.
select subjectId, count(*) from Course group by subjectId
Hide Answer
32.13 Assume that each credit hour is 50 minutes of lectures. Get the total minutes for the courses that each student takes.
select Student.ssn, 50 * sum(numOfCredits) from Student, Enrollment, Course where Student.ssn = Enrollment.ssn and Course.courseId = Enrollment.courseId group by Student.ssn
Hide Answer
32.14 What are the advantages of developing database applications using Java?
(1) platform independence, i.e., your Java program can run on any platform and access any relational database. (2) Java has an extensive set of classes and interfaces in the API that you can use to develop database applications and applets productively and efficiently.
Hide Answer
32.15 Describe the following JDBC interfaces: Driver, Connection, Statement, and ResultSet.
A JDBC application loads an appropriate driver using the Driver interface, connects to the database using the Connection interface, creates and executes SQL statements using the Statement interface, and processes the result using the ResultSet interface if the statements return results.
Hide Answer
32.16 How do you load a JDBC driver? What are the driver classes for MySQL, Oracle, and Java DB?
Use the Class.for(driverName) method to load the driver with its full name. The driver class for MySQL and Oracle are com.mysql.jdbc.Driver, oracle.jdbc.driver.OracleDriver. For Java DB are org.apache.derby.jdbc.EmbeddedDriver (embedded) and org.apache.derby.jdbc.ClientDriver (network).
Hide Answer
32.17 How do you create a database connection? What are the URLs for MySQL, Oracle, and Java DB?
To create a JDBC connection, use DriverManager.getConnection(url). The URLs for MySQL, Oracle, and Java DB are jdbc:mysql://liang.armstrong.edu/test, jdbc:oracle:thin:@liang.armstrong.edu:1521:ora9i, jdbc:derby:dbname (Java DB embedded), and jdbc:derby://hostname/dbname (Java DB network).
Hide Answer
32.18 How do you create a Statement and execute an SQL statement?
To create an instance of Statement, use connection.createStatement(). To execute a statement, use the methods executeQuery(â€¦) and executeUpdate(â€¦). executeQuery(â€¦) returns a result set, but executeUpdate(â€¦) does not return a result set.
Hide Answer
32.19 How do you retrieve values in a ResultSet?
To retrieve values in a ResultSet, use next() to move the cursor to the next row and use the getXxx(number) or getXxx(columnName) method to retrieve fields from the current row.
Hide Answer
32.20 Does JDBC automatically commit a transaction? How do you set autocommit to false?
JDBC automatically commits a transaction. You can set autoCommit to false using setAutoCommit(false) on a Connection object.
Hide Answer
32.21 Describe prepared statements. How do you create instances of PreparedStatement? How do you execute a PreparedStatement? How do you set parameter values in a PreparedStatement?
PreparedStatement is a subinterface of Statement. To create a PreparedStatement, use connection.prepareStatement(String sql), where sql is a prepared statement with parameters denoted using question marks. To execute a PreparedStatement, first set parameter values using the setX(int parameterIndex, X value) method, then invoke execute() method.
Hide Answer
32.22 What are the benefits of using prepared statements?
Since the prepared statements are precompiled, they are efficient for repeated executions.
Hide Answer
32.23 Describe callable statements. How do you create instances of CallableStatement? How do you execute a CallableStatement? How do you register OUT parameters in a CallableStatement?
CallableStatement is a subinterface of PreparedStatement. To create a CallableStatement, use
CallableStatement callableStatement = connection.prepareCall(
 "{call sampleProcedure(?, ?, ?)}");
Or
CallableStatement callableStatement = connection.prepareCall(
 "{? = call sampleFunction(?, ?, ?)}");
To execute a CallableStatement, first IN and IN OUT parameter values using the setX(int parameterIndex, X value) method, and register OUT parameters using the registerOutParameter method. You may use execute() or executeUpdate() to execute the procedure depending on the type of SQL statement.
Hide Answer
32.24 What is DatabaseMetaData for? Describe the methods in DatabaseMetaData. How do you get an instance of DatabaseMetaData?
The DatabaseMetaData interface contains the methods for obtaining database-wide information.
The general information includes the URL, username, product name, product version, driver name, driver version, available functions, available data types, and so on. The methods for general information usually return a string, an integer, except that the method for retrieving available data types returns a ResultSet. Most methods of this type don't have parameters.
The methods for getting database objects return lists of information in ResultSets. You can use the normal ResultSet methods, such as getString and getInt, to retrieve data from these ResultSets. If a given form of metadata is not available, these methods should throw a SQLException.
To create an instance of DatabaseMetaData, use the getDatabaseMetaData() method from a Connection object.
Hide Answer
32.25 What is ResultSetMetaData for? Describe the methods in ResultSetMetaData. How do you get an instance of ResultSetMetaData?
The ResultSetMetaData interface describes information pertaining to the result set. A ResultSetMetaData object can be used to find out about the types and properties of the columns in a ResultSet. The methods in ResultSetMetaData have a single int parameter representing the column except that the getColumnCount method has no parameters. All these methods return int, boolean, or String. To create an instance of ResultSetMetaData, use getResultSetMetaData from an instance of ResultSet.
Hide Answer
32.26 How do you find the number of columns in a result set? How do you find the column names in a result set?
To find the number of columns in a result set, first create an instance of ResultSetMetaData using the getMetaData() method on a ResultSet. The use getColumnCount() to return the column count and use getColumnName(int) to return the column name.
Hide Answer
[bookmark: _GoBack]
