
29 
Building a Web-Based 

 Email Client with Laravel 
Part II 

Now that you have been made familiar with the fundamental concepts and components of 
the Laravel framework in the previous chapter, we are ready to discuss their 
implementation in a real code base. For this project we are going to combine the knowledge 
we’ve obtained on Laravel with the IMAP functionality provided in PHP to create a simple 
web-based email client.  

Key topics covered include: 

▪ The fundamental functions for interacting with an IMAP server in PHP, including the 
design of an object-oriented interface for them 

▪ The design and implementation of a basic Laravel 5 application to read, compose, and 
reply to emails from a web browser.  

Building a Simple IMAP Client using Laravel 
For the purposes of simplicity we will build our email client out of the box to work with 
Google’s Gmail email service (effectively reproducing a subset of the Gmail web 
interface). 

The PHP IMAP Functions 
IMAP, or the Internet Message Access Protocol, is a common standard in use within the 
Internet today for accessing email messages stored on a server. Compared to other 
protocols such as POP3 (which typically only temporarily stores emails on behalf of a user 



Chapter 29  Building a Web-Based Email Client with Laravel Part II 
 

29-2 
 

until they are downloaded), IMAP is designed to retain and manage email on the server 
itself, providing access to designated users. 

In PHP access to IMAP servers is provided by the PHP IMAP extension, an extremely 
robust and rather low-level set of tools that let you manipulate and work with an email 
server by the IMAP protocol. Not all of this functionality is needed to build a simple email 
client as we are in this project, so we will focus on that functionality we specifically use. 

Like many of the older extensions available in PHP, IMAP functions primarily through the 
use of resources. In its most basic form, a connection is opened to the IMAP server using 
the imap_open() function and a PHP resource is returned representing that connection. 
This resource is then used in all further interactions with the server, generally as the first 
parameter to that function. 

Opening a Connection to an IMAP server 
In order to open a connection to an IMAP server we will start with the imap_open() 
function declaration: 
resource imap_open(string $mailbox_spec, string $username, string $password [, int 
$options = 0 [, int $n_retries = 0 [, array $params = null ]]]); 

In this declaration, $mailbox_spec is a specially-constructed string that specifies the IMAP 
server (and specific mailbox on that server) you wish to connect to. We’ll discuss this in 
more detail below. The $username and $password parameters are self-explanatory as the 
authentication credentials for that mailbox. The optional $options parameter is a bit-mask 
of various options to apply to this connection and is a combination of the following 
constant values: 

▪ OP_READONLY – Open the mailbox for read operations only. 

▪ OP_HALFOPEN – Open just a connection to the server, but do not access a specific 
mailbox. 

▪ CL_EXPUNGE – Expunge the referenced mailbox upon close of the connection. 

▪ OP_DEBUG – Enable debugging of protocol negotiations. 

▪ OP_SHORTCACHE – Limit caching. 

▪ OP_SECURE – Only connect to the IMAP server using a secure version of 
authentication. 

Note referenced in the PHP documentation there are other constants which can be passed as 
part of this bitmask, however these have been omitted because they are either typically not 
useful to the practical developer or exist for the use of the extension maintainers. 

The second optional parameter, $n_retries, is an integer describing how many connection 
attempts should be tried before the function ends in error, and $params is an array of 
key/value pairs to set additional options. At the time of writing a single configuration 



Chapter 29  Building a Web-Based Email Client with Laravel Part II 
 

29-3 
 

option DISABLE_AUTHENTICATOR is available for this parameter that disables authentication 
properties when set (please refer to the PHP IMAP documentation for more information). 

Let’s get back to the most important of parameters, the $mailbox_spec parameter, and 
describe how it works. The concept behind this parameter is similar to the DSN concept 
previously explained in discussions of the PDO extension except instead of it specifying the 
connection to a database it specifies the connection to an IMAP server and corresponding 
mailbox on that server. Fundamentally the basic syntax of this connection string is as 
shown: 
 "{" server [":"port][flags] "}" [mailbox_name] 

Or in a more practical example: 
 {imap.gmail.com:993/imap/ssl}/INBOX 

All flags are specified in the format of a path within the server definition and can be 
combined as such. For example, one available flag is the /novalidate-cert flag, which 
instructs the connection not to validate the security certificates in a TLS/SSL connection 
(which would be needed if the certificate of the server was self-signed). The above example 
of connecting using this flag would be as follows: 
 {imap.google.com:993/imap/ssl/novalidate-cert}/INBOX 

A complete reference of available IMAP connection flags and their meaning can be found 
in the PHP documentation of the imap_open() function. 

IMAP and Mailboxes 
In the IMAP protocol email is organized into a series of folders, or in IMAP terms 
mailboxes. This provides the obvious benefit to the end user of better organization of their 
email, and in our simple email client we will be providing the means to switch between 
these various mailboxes to see their contents. The first step in this process is retrieving a list 
of all of the mailboxes accessible by the user, which is handled in PHP by using the 
imap_list() function: 
array imap_list(resource $resource, string $server_ref, string $search_pattern);  

The first parameter of imap_list() is as expected the server resource returned from a call 
to the imap_open() function. The second parameter is the server reference, which is 
typically identical to the $mailbox_spec of the imap_open() function (without specifying 
the mailbox portion). The final parameter is the $pattern parameter, which allows you 
specify the specific portion of the mailbox hierarchy from which to retrieve your list.  

The pattern can be a specific mailbox path and provides for two special cases of search. The 
first, specifying simply '*' as the pattern will return all mailboxes in the hierarchy. The 
second, '%' specifies return only the current mailboxes in the specified path. Let’s 
demonstrate this function in action: 
<?php 

 



Chapter 29  Building a Web-Based Email Client with Laravel Part II 
 

29-4 
 

    // Return all mailboxes 

    $mailboxes = imap_list($resource, '{imap.google.com:993/imap/ssl}', '*'); 

 

    // Return only the mailboxes that exist under 'Archive' (not including their 
children) 

    $archives = imap_list($resource, '{imap.google.com:993/imap/ssl}', 
'Archive/%'); 

 

?> 

Before we can retrieve a list of messages, we must first be in the appropriate mailbox of the 
account to retrieve the messages of. Although odd, there is no intuitive or obvious function 
for switching mailboxes available in the PHP extension. Rather, in order to change 
mailboxes you will need to employ the imap_reopen() function to “re-open” the 
connection under the context of a new mailbox: 
    bool imap_reopen(resource $resource, string $new_mailbox_ref [, int $options [, 
int $n_retries]]) 

As before the $resource parameter is the resource returned from the original call to the 
imap_open() function previously introduced. The second parameter, $new_mailbox_ref is 
a string of the identical format of the $mailbox_ref of the imap_open() function, except 
referring to the mailbox you would like to change into. The final two parameters $options 
and $n_retries have the same purpose as was previously introduced for the imap_open() 
function. 

Thus, if you would like to change from the 'INBOX' mailbox to the 'Archive' mailbox on 
an IMAP server, the following is an example of how this could be done: 
<?php 

 

$connection = imap_open('{imap.gmail.com:993/imap/ssl}/INBOX', $username, 
$password); 

 

if(imap_reopen($connection '{imap.gmail.com:993/imap/ssl}/Archive')) { 

     echo "Mailbox changed to 'Archive'"; 

} else { 

    echo "Failed to switch mailbox."; 

} 

 

?> 

There are other various functions available to you as the developer when working with 
mailboxes (such as those for creating and deleting mailboxes), but these tools are outside of 
the scope of our simple web client and this chapter. If you would like to use them, we 
encourage you to refer to the PHP documentation which details their use. 

Retrieving Message lists from IMAP 



Chapter 29  Building a Web-Based Email Client with Laravel Part II 
 

29-5 
 

Thus far, we have demonstrated how to make a connection to an IMAP server, list the 
available mailboxes, and select which mailbox you would like to work with at any given 
moment. Next we will look at how you retrieve the email(s) contained within that mailbox 
if any are present. 

Logically you likely will want to retrieve a list of emails within an inbox prior to 
downloading a specific email message. Using the PHP extension, this is fundamentally 
done using the imap_fetch_overview() function, which will return a range of emails in a 
given inbox that you specify. It is important to note that this function returns only a range 
and not all of the emails available. Especially in today’s modern era of cheap storage, often 
the contents of a given IMAP mailbox can range in the tens of thousands of emails and thus 
it is impractical and largely unreasonable to want to retrieve all of them in a single action. 
Instead, it is much more reasonable to only retrieve a portion of the emails available at any 
given time and implement some mechanism of pagination to move forward and backward 
in the list. This will be covered momentarily in this chapter, but for now let’s just look at 
the imap_fetch_overview() function itself and how it is used: 
array imap_fetch_overview(resource $resource, string $sequence [, int $options = 
0]) 

The $resource parameter is at this point obviously the IMAP resource in question, while 
the $sequence parameter is a string representing a description of which messages you 
would like to retrieve from the mailbox. This sequence can take multiple forms, and when 
we say sequence we are referring to the notion that all of the emails in a given mailbox are 
given a sequential identifier. Thus, the first email has a sequence value of 1, the second 2, 
etc. When specifying the sequence, you can either enumerate specific sequence values you 
would like to retrieve as a comma-separated list or you can specify a range using the format 
"X:Y" where X is the start of the sequence and Y is the end of the range you wish to retrieve: 
<?php 

 

// Retrieve the first 10 messages in the inbox using the sequence 

$messages = imap_fetch_overview($connection, "1:10"); 

 

?> 

You will note the last optional parameter of the imap_fetch_overview() function has yet 
to be described, and that is because it introduces a new concept that requires introduction, 
which we will do now. 

As previously stated, the $sequence parameter refers to an integer value representing the 
specific position of a given email within the entire mailbox. Thus, using a sequence range 
of 1:10 or 3,5,7 will return the first ten emails or the third, fifth, and seventh emails as an 
array, respectively. However, there is a second way to reference an email within a mailbox 
that is using a unique identifier given to that email by the IMAP server. This unique 
identifier allows for fast retrieval of a specific email without needing to first locate its 
position in the mailbox (often because you have already previously found it). The unique 
identifier for an email is returned as part of the array structure representing the email under 
the 'uid' array key. When retrieving emails by unique identifier as list using the 



Chapter 29  Building a Web-Based Email Client with Laravel Part II 
 

29-6 
 

imap_fetch_overview() function you can set the optional $options parameter to the 
constant FT_UID and then specify one or more comma-separated unique identifiers for the 
$sequence parameter. When referencing emails by unique identifier however, the ability to 
specify a sequence range in the 'X:Y' format previously introduced is unavailable. The 
follow code demonstrates this in principle: 
<?php 

 

// Retrieve the first ten emails in the current inbox 

$messages = imap_fetch_overview($connection, '1:10'); 

 

// Extract the unique IDs of the third, fifth, and seventh emails (array is zero-
indexed) 

$unique_ids = [ 

    $messages[2]['uid'], 

    $messages[4]['uid'], 

    $messages[6]['uid'] 

]; 

 

// Retrieve only the third, fifth, and seventh emails by unique ID 

$subsetMessages = imap_fetch_overview($connection, implode(',', $unique_ids), 
FT_UID); 

 

?> 

As the name of the function implies, the imap_fetch_overview() function only returns an 
overview of the email with only those details about the message typically needed when 
displaying a list of emails in an email client. For each message returned in the resulting 
array the following key/value pairs will be defined if available for that email message. As 
not all IMAP servers or even individual emails within a single IMAP server store the same 
details some of these keys may not be available and they should always be confirmed 
before attempting to reference them: 

▪ $email['subject'] – The subject of the email 

▪ $email['from'] – The sender of the email’s address 

▪ $email['to'] – The recipient of the email’s address (in RFC822 format) 

▪ $email['date'] – The date the email was sent (in RFC822 format) 

▪ $email['message_id'] – The message ID of the email (not to be confused with 
sequence or unique ID 

▪ $email['references'] – A optional message ID indicating this email is in reference 
to the provided message ID 



Chapter 29  Building a Web-Based Email Client with Laravel Part II 
 

29-7 
 

▪ $email['in_reply_to'] – A optional message ID indicating this email is a reply to 
a previous email indicated by the provided message ID 

▪ $email['size'] – the Size of the email in bytes 

▪ $email['uid'] – The Unique ID of the email as specified by the IMAP server 

▪ $email['msgno'] – The sequence ID of the email within the mailbox 

▪ $email['recent'] – A flag indicating the message is recent 

▪ $email['flagged'] – A flag indicating the message is flagged as spam, junk, etc. 

▪ $email['answered'] – A flag indicating the message has been previously responded 
to 

▪ $email['deleted'] – A flag indicating the message is flagged to be deleted 

▪ $email['seen'] – A flag indicating the message as previously been opened 

▪ $email['draft'] – A flag indicating the message is marked as a draft 

With our introduction to the imap_fetch_overview() function complete let us now return 
to the problem of pagination. Seeing that it is impractical to attempt to simply download 
every single message in a given mailbox every time, it is necessary for us to split this into 
multiple steps download a page of emails at a time. To do this effectively in a way that 
allows us to know how many pages of content we have, we first need to understand how 
many emails are in a given mailbox. This sort of metadata about a given IMAP mailbox is 
the purview of the imap_check() function we will introduce now. 

The purpose of the imap_check() function is to retrieve various useful pieces of 
information about the currently active mailbox. It has a simple prototype: 
 object imap_check(resource $connection); 

The object returned by the imap_check() function is an instance of the generic PHP 
stdClass class with the following properties set: 

▪ $info->Date – the RFC2822 formatted current system time for the mailbox 

▪ $info->Driver – the protocol used to access this mailbox (pop3, imap, nntp are the 
possible results) 

▪ $info->Mailbox – the name of the current mailbox 

▪ $info->Nmsgs – The number of email messages in the current mailbox 

▪ $info->Recent – The number of recent messages in the current mailbox. 

For our purposes of pagination, we will use the Nmsgs property of this result to determine 
the total number of messages in our current mailbox and calculate for example the total 



Chapter 29  Building a Web-Based Email Client with Laravel Part II 
 

29-8 
 

number of pages it will take to retrieve them all (given a pre-determined maximum page 
size). Putting the imap_check() function together with the imap_fetch_overview() 
function we can devise our own function that returns emails from the mailbox by page. 
Let’s take a look at this now in a function called imap_overview_by_page: 
<?php 

 

function imap_overview_by_page($connection, int $page = 1, int $perPage = 25, int 
$options = 0) 

{ 

    $boxInfo = imap_check($connection); 

     

    $start = $boxInfo->Nmsgs - ($perPage * $page); 

    $end = $start + ($perPage - (($page > 1) ? 1 : 0)); 

 

    if($start < 1) { 

        $start = 1; 

    } 

 

    $overview = imap_fetch_overview($connection, "$start:$end", $options); 

    $overview = array_reverse($overview); 

 

    return $overview; 

} 

 

?> 

The defined imap_overview_by_page() function is fairly self-explanatory. It accepts an 
IMAP resource as its first parameter, the page from which to start as the second as the 
$page parameter, the total number of results per page as the third $perPage parameter and 
finally the $options parameter which serves the same purpose as the identical parameter in 
the internal imap_fetch_overview() function. Within the function we use the just-
described imap_check() function to retrieve the total number of messages in the current 
mailbox and then use that value along with the $page and $perPage parameters to calculate 
the start and end sequence values needed. Because of the nature of the sequence value once 
we retrieve the list we call array_reverse() to reorganize that page in the proper logical 
sequence and return it to the user for further use. 

As we introduce these functions it should become more clear how we will go about 
combining all of these tools into the creation of a simple web-based email client. Now that 
we have explored how to retrieve the overview of a given email message in a mailbox we 
now need to discuss how to retrieve the full contents of a specific email, including 
attachments. 



Chapter 29  Building a Web-Based Email Client with Laravel Part II 
 

29-9 
 

Retrieving and Parsing Specific Messages from IMAP 
Thus far we have only downloaded a brief summary of emails from a given mailbox. To 
download the actual contents of an email, access any attachments, etc., we must introduce 
the imap_body() function, which retrieves the actual body of a message: 
 imap_body(resource $connection, int $msgId [, int $options = 0]); 

Where $connection is the IMAP mailbox resource being accessed and $msgId is the ID of 
the message to access. There are some useful options available to us when downloading the 
body of an email message worth discussing as well: 

▪ FT_UID – Indicates the $msgId parameter is the unique ID for the message given by 
the IMAP server instead of the sequence of the message within the mailbox. 

▪ FT_PEEK – Indicates the message should be downloaded but the IMAP server should 
set the “seen” flag for the message to true. This is useful if you’d like to download the 
message for programmatic reasons other than the user actually reading the message. 

Thus, as was the case when working with the imap_fetch_overview() function, by 
passing the FT_UID constant as an option to imap_body(), you can download a specific 
email somewhere within the list of the mailbox by referencing its unique ID rather than its 
position within the list as a sequence. 

Using the imap_body() function to download the body of the message is pretty 
straightforward. In the simplest manifestation of email one would expect the body of the 
email to simply be the message itself. This can be true, however in almost all cases the 
body of the email contains within itself a structure known as the MIME format. This format 
is an ASCII-based format that allows you to create emails that have multiple different 
versions (i.e. HTML and plain text), as well as attachments. Thus, the body of a modern 
email often itself is a structure that needs to be parsed, separating, for example, the message 
of your email (presented both in HTML and plaintext) from the document you attached to 
that email as an attachment. 

The full scope and understanding of the MIME format is beyond the scope of this chapter, 
however, thankfully, the IMAP extension within PHP does provide some useful tools to 
help parse out the structure of an email into its meaningful components. This is done 
through the use of the imap_fetchstructure() function: 
object imap_fetchstructure(resource $connection, int $msgId [, int $options = 0]); 

Where, as was the case using imap_body(), in this case $connection and $msgId are the 
connections to the mailbox and the specific message (either by sequence number or unique 
ID via the FT_UID option).  

Even without getting into the details of the MIME format itself, the structure returned by 
imap_fetchstructure() can easily become very complicated. The function itself returns 
an object (of class stdClass), which will be the tree-structure of the email retrieved. We 
say tree-structure because, as you will see, the object returned is but the first top-level node 
of the structure, and contained within it are potentially other identical in structure child-



Chapter 29  Building a Web-Based Email Client with Laravel Part II 
 

29-10 
 

nodes for each part and sub-part of the message.  Here is the basic structure of a single node 
object: 

▪ type – The Primary type for this node. 

▪ encoding – The encoding this node uses to transmit its content (e.g., base64). 

▪ ifsubtype – A boolean indicating if there is a subtype provided. 

▪ subtype – The MIME subtype of this node. 

▪ ifdescription – A boolean indicating if there is a description provided. 

▪ description – The description string. 

▪ ifid – A boolean indicating if there was an identification string provided. 

▪ id – The identification string. 

▪ lines – The number of lines in the content of this node. 

▪ bytes – The number of bytes used by this node. 

▪ ifdisposition – A boolean indicating if there is a disposition string provided. 

▪ disposition – The string containing this node’s disposition. 

▪ ifdparameters – A boolean indicating if there are disposition parameters provided. 

▪ dparameters – An array of disposition parameter objects, each having an ‘attribute’ 
and ‘value’ property itemizing the parameters provided for use with the disposition. 

▪ ifparameters – A boolean indicating if there are node parameters provided. 

▪ parameters – A similar array of objects as described for the dparameters attribute, 
except relating to the parameters for the node. 

▪ parts – An array of child-nodes representing another portion of the message. 

As can be deduced from the contents of any given node, the structure of a MIME email can 
be very complicated and the logic required to implement the processing even more so. 
Rather that demonstrating this logic now in a way that would be difficult to do 
meaningfully in a stand-alone fashion we will instead move on to our project at hand of a 
web-based email client wherein we will demonstrate this logic in detail instead. 

Wrapping up IMAP for our Laravel Application 
With an introductory knowledge of both the Laravel framework and the PHP IMAP 
extension out of the way, let’s now put the two together in the first step of building our 
web-based email client. The first step in this process is to create a relatively small helper 
library that wraps the functionality provided by the IMAP extension into something more 



Chapter 29  Building a Web-Based Email Client with Laravel Part II 
 

29-11 
 

immediately useful to what will be the rest of our Laravel application. We will assume you 
are starting from a brand-new Laravel project. 

The first thing we will do is create a directory and thus a namespace within our Laravel 
application to house our IMAP library. You can name this whatever you wish, but we will 
be creating the app/Library/Imap directory which corresponds to the App\Library\Imap 
PHP namespace automatically within Laravel. 

The first piece of our IMAP library we need to build is the part that connects to an IMAP 
server. We have decided to architect this as such where the generic logic of connecting to 
an IMAP server is abstracted away from the specific implementation details of a single 
IMAP server implementation. Since for our purposes we will be building an IMAP client to 
work against the Google Gmail IMAP server, we will start with two classes: 
App\Library\Imap\AbstractConnection, which is an abstract class containing the 
generic implementation details of an IMAP connection, and 
App\Library\Imap\GmailConnection, which contains the specifics for connecting to 
Google’s Gmail IMAP server. 

Let’s start with the App\Library\Imap\AbstractConnection class shown: 
<?php 

 

namespace App\Library\Imap; 

 

abstract class AbstractConnection 

{ 

    protected $_username; 

    protected $_password; 

     

    protected $hostname = ''; 

    protected $port = 993; 

    protected $path = '/imap/ssl'; 

    protected $mailbox = 'INBOX'; 

     

    public function getUsername() : string 

    { 

        return $this->_username; 

    } 

     

    public function getPassword() : string 

    { 

        return $this->_password; 

    } 

     

    public function setUsername(string $username) : self 

    { 



Chapter 29  Building a Web-Based Email Client with Laravel Part II 
 

29-12 
 

        $this->_username = $username; 

        return $this; 

    } 

     

    public function setPassword(string $password) : self 

    { 

        $this->_password = $password; 

        return $this; 

    } 

     

    public function connect(int $options = 0, int $n_retries = 0,  

                            array $params = []) : \App\Library\Imap\Client 

    { 

        $connection = imap_open( 

            $this->getServerRef(), 

            $this->getUsername(), 

            $this->getPassword(), 

            $options, 

            $n_retries, 

            $params 

        ); 

         

        if(!is_resource($connection)) { 

            throw new ImapException("Failed to connect to server"); 

        } 

         

        return new Client($connection, $this->getServerDetails()); 

    } 

     

    protected function getServerDetails() 

    { 

        return [ 

            'hostname' => $this->hostname, 

            'port' => $this->port, 

            'path' => $this->path, 

            'mailbox' => $this->mailbox 

        ]; 

    } 

     

    protected function getServerRef()  

    { 

        if(is_null($this->hostname)) { 



Chapter 29  Building a Web-Based Email Client with Laravel Part II 
 

29-13 
 

            throw new \Exception("No Hostname provided"); 

        } 

         

        $serverRef = '{' . $this->hostname; 

         

        if(!empty($this->port)) { 

            $serverRef .= ':' . $this->port; 

        } 

         

        if(!empty($this->path)) { 

            $serverRef .= $this->path; 

        } 

         

        $serverRef .= '}' . $this->mailbox; 

         

        return $serverRef; 

    } 

} 

The purpose of the App\Library\Imap\AbstractConnection class, and any class that 
extends from it, fundamentally is to provide the necessary logic to make a connection to the 
IMAP server in question using the PHP IMAP extension, and then return a different class 
yet to be discussed – the App\Library\Imap\Client class, which is given this IMAP 
connection resource and contains all of the functionality of working with that connection. 

It is assumed that the logic of the App\Library\Imap\AbstractConnection class is 
relatively straightforward requiring no detailed explanation of how it works beyond 
presenting the code for it. As previously said, since we are building our client to work with 
Google Gmail, we will also create a simple App\Library\Imap\GmailConnection class 
that extends App\Library\Imap\AbstractConnect to provide specific connection details 
for Gmail. Below is this class, followed by an example of how it can be used to return a 
useful Client object: 
<?php 

 

namespace App\Library\Imap; 

 

class GmailConnection extends AbstractConnection 

{ 

    protected $hostname = 'imap.gmail.com'; 

    protected $port = 993; 

    protected $path = '/imap/ssl'; 

    protected $mailbox = 'INBOX'; 

     

} 



Chapter 29  Building a Web-Based Email Client with Laravel Part II 
 

29-14 
 

 

?> 

 

<?php 

$connection = new GmailConnection(); 

 

try { 

$client = $connection->setUsername($username) 

                     ->setPassword($password) 

                     ->connect(); 

} catch(\App\Library\Imap\ImapException $e) { 

 echo "Failed to connect: {$e->getMessage()}"; 

} 

 

?> 

Once a connection has been created and passed into the App\Library\Imap\Client class 
we are now ready to begin implementing the key pieces of IMAP functionality we’ll need for 
our web client. 

The IMAP Client Class 
The App\Library\Imap\Client class we are about to create houses all of the functionality 
required to actually interact with an IMAP server using the PHP IMAP extension. It accepts 
in its constructor two parameters. The first is the IMAP connection resource itself (provided 
by a class inheriting from App\Library\Imap\AbstractConnection) and the 
specifications of that connection (used to construct the server reference string as necessary): 
public function __construct($connection, array $spec) 

{ 

    if(!is_resource($connection)) { 

        throw new \InvalidArgumentException("Must provide an IMAP connection 
resource"); 

    } 

     

    $this->_prototype = new Message($connection); 

     

    $this->_connection = $connection; 

    $this->_spec = $spec; 

    $this->_currentMailbox = $spec['mailbox']; 

} 

One thing you will note in the above constructor is we create an instance of a yet unknown 
class Message() and also pass it the connection. This is another class in our library that 
serves as a container for an individual message from the IMAP server. We employ a 



Chapter 29  Building a Web-Based Email Client with Laravel Part II 
 

29-15 
 

prototype design pattern (where the parent instance is simply cloned every time we want to 
create a new message object) to allow the developer to implement a Message class easily. 
We will, however, discuss the Message class in more detail later for now, we should be 
simply aware that this prototype Message object can be replaced as shown: 
public function setPrototype(MessageInterface $obj) : self 

{ 

    $this->_prototype = $obj; 

    return $this; 

} 

 

public function getPrototype() : MessageInterface 

{ 

    return clone $this->_prototype; 

} 

Like the IMAP extension for PHP, the App\Library\Imap\Client class we are creating 
will function on a single mailbox at a time. In the constructor we assigned the initial 
mailbox to be the same default provided by the class responsible for creating the client, but 
next we need to implement the methods that allow us to change the active mailbox or 
retrieve which mailbox the client class is currently working under. This is accomplished by 
the implementation of two methods, the getCurrentMailbox() and 
setCurrentMailbox() methods as shown: 
public function getCurrentMailbox() : string 

{ 

    return $this->_currentMailbox; 

} 

 

public function setCurrentMailbox(string $box, int $options = 0,  

                                  int $n_retries = 0) : self 

{ 

    $this->_currentMailbox = $box; 

     

    if(!imap_reopen($this->_connection, $this->getServerRef() .  

                    $this->_currentMailbox, $options, $n_retries)) { 

        throw new ImapException("Failed to open Mailbox: $box"); 

    } 

     

    return $this; 

} 

The first method we create, getCurrentMail(), is simply a “getter” method which returns 
the current value of the Client::$_currentMailbox property. However the “setter” 
method is a bit more involved. Not only does it set this same property within the class but 
also uses the aforementioned imap_reopen() method to actually change the mailbox we 



Chapter 29  Building a Web-Based Email Client with Laravel Part II 
 

29-16 
 

are connected to on the IMAP server, thus ensuring all future operations are done against 
the mailbox specified. 

To meaningfully create a web-based IMAP client that supports multiple mailboxes we need 
to have a sense of which mailboxes are available to us. This brings us to the next method 
within the client Class, the getMailboxes() method. The purpose of this method is as its 
name implies, to simply return an array listing the various mailboxes available within the 
IMAP connection. It does so by using the PHP imap_list() function to retrieve a list of 
mailboxes: 
public function getMailboxes($pattern = '*')  

{ 

 

    $serverRef = $this->getServerRef(); 

     

    $result = imap_list($this->_connection, $serverRef, $pattern); 

     

    if(!is_array($result)) { 

        return []; 

    } 

     

    $retval = []; 

     

    foreach($result as $mailbox) { 

        $retval[] = str_replace($serverRef, '', $mailbox);     

    } 

     

    return $retval; 

} 

Note that as previously introduced, the imap_list() method requires a server reference 
string similar that used for imap_open() that defines the scope of the list of mailboxes we 
seek to retrieve. For our purposes, we are interested in the mailboxes at the “root” of the 
connection and thus have written our method as such. Since the imap_list() function 
returns the list of mailboxes using a fully qualified reference string (including the server 
name) we strip this information from our final return array. For your reference, here is the 
getServerRef() method referenced as well, which simply constructs the IMAP server 
connection string for us: 
protected function getServerRef() 

{ 

    $serverRef = '{' . $this->_spec['hostname']; 

     

    if(!empty($this->_spec['port'])) { 

        $serverRef .= ':' . $this->_spec['port']; 

    } 



Chapter 29  Building a Web-Based Email Client with Laravel Part II 
 

29-17 
 

     

    if(!empty($this->_spec['path'])) { 

        $serverRef .= $this->_spec['path']; 

    } 

     

    $serverRef .= '}'; 

     

    return $serverRef; 

} 

With the methods we have thus far introduced, our IMAP client class now has the ability to 
list the available mailboxes and switch between them quickly and easily. Next, we need to 
retrieve a list of emails contained within any given mailbox. Earlier in this chapter we 
retrieved such lists using the imap_fetch_overview() PHP function. If you will recall, we 
discussed the necessity for such a function to implement some sort of paging mechanism in 
order to be of practical use, and even implemented a function that did this paging for us in 
demonstration. We will reuse most of the same code in the getPage() method below to 
retrieve a list of emails within our client class: 
public function getPage(int $page = 1, int $perPage = 25, $options = 0) : 
\Illuminate\Support\Collection 

{ 

    $boxInfo = imap_check($this->_connection); 

      

    $start = $boxInfo->Nmsgs - ($perPage * $page); 

    $end = $start + ($perPage - (($page > 1) ? 1 : 0) ); 

     

    if($start < 1) { 

        $start = 1; 

    } 

     

    $overview = imap_fetch_overview($this->_connection,  

                                    "$start:$end",  

                                     $options); 

    $overview = array_reverse($overview); 

     

    $collection = new Collection(); 

     

    foreach($overview as $key => $msg) { 

        $msgObj = $this->getPrototype(); 

         

        $msgObj->setSubject($msg->subject) 

               ->setFrom($msg->from) 

               ->setTo($msg->to) 



Chapter 29  Building a Web-Based Email Client with Laravel Part II 
 

29-18 
 

               ->setDate($msg->date) 

               ->setMessageId($msg->message_id) 

               ->setSize($msg->size) 

               ->setUID($msg->uid) 

               ->setMessageNo($msg->msgno); 

         

        if(isset($msg->references)) { 

            $msgObj->setReferences($msg->references); 

        } 

         

        if(isset($msg->in_reply_to)) { 

            $msgObj->setInReplyTo($msg->in_reply_to); 

        } 

         

        $collection->put($key, $msgObj); 

    } 

     

    return $collection; 

} 

Unlike our original implementation of pagination with the imap_fetch_overview() 
method, our getPage() method for our client class has been written specifically for use in 
both the Laravel environment and using an object-oriented approach. Specifically, rather 
than returning an array as our original implementation, we now return an instance of the 
Illuminate\Support\Collection class, which is a Laravel framework implementation of 
an object-oriented Collection. This type of collection class offers much more flexibility 
than a simple array (please see the Laravel API documentation for a complete description 
of its functionality). In addition, we are not storing arrays within our collection but instead 
instances of the Message prototype we first introduced in the discussion of the client’s 
constructor.  

If you would like to return a single message rather than a list from a given mailbox using 
the client, we can build a getMessage() method for this purpose. In a similar fashion to 
getPage(), which returns a list of Message prototype instances, getMessage() returns a 
single instance of the Message prototype: 
public function getMessage($id, int $options = 0) :  

\App\Library\Imap\Message\MessageInterface 

{ 

    $overview = imap_fetch_overview($this->_connection, $id, $options); 

     

    if(empty($overview)) { 

        return $this->getPrototype(); 

    } 

 



Chapter 29  Building a Web-Based Email Client with Laravel Part II 
 

29-19 
 

    $overview = array_pop($overview); 

     

    $retval = $this->getPrototype(); 

     

    $retval->setSubject($overview->subject) 

           ->setFrom($overview->from) 

           ->setTo($overview->to) 

           ->setDate($overview->date) 

           ->setMessageId($overview->message_id) 

           ->setSize($overview->size) 

           ->setUID($overview->uid) 

           ->setMessageNo($overview->msgno); 

     

    return $retval; 

} 

As you might be able to deduce from the getPage() and getMessage() methods, the 
Message class we have implemented serves largely as an object wrapper containing the 
various values returned from the imap_fetch_overview() method for each email (see the 
discussion of imap_fetch_overview() earlier in this chapter for details). Let’s introduce 
this class and its architectural basis in more detail now. 

The Message and MessageInterface of the IMAP Client 
Earlier in this chapter we discussed the concept that our IMAP client class used a prototype 
pattern to define the object which would be used as a container for any given individual 
email message in an IMAP inbox. From an implementation perspective, the IMAP client 
we are creating requires that we provide it with any object that implements the 
App\Library\Imap\Messages\MessageInterface interface defined as follows: 
<?php 

 

namespace App\Library\Imap\Message; 

 

interface MessageInterface 

{ 

        public function __construct($connection); 

        public function setSubject(string $subject); 

        public function getSubject() : string; 

        public function setFrom(string $from); 

        public function getFrom() : string; 

        public function setTo(string $to); 

        public function getTo() : string; 

        public function setDate(string $date); 

        public function getDate() : \DateTime; 



Chapter 29  Building a Web-Based Email Client with Laravel Part II 
 

29-20 
 

        public function setMessageId(string $id); 

        public function getMessageId() : string; 

        public function setReferences(string $refs); 

        public function getReferences() : string; 

        public function setInReplyTo(string $to); 

        public function getInReplyTo() : string; 

        public function setSize(int $size); 

        public function getSize() : int; 

        public function setUID(string $uid); 

        public function getUID() : string; 

        public function setMessageNo(int $no); 

        public function getMessageNo() : int; 

} 

As a default implementation of this interface, we create what has been previously 
introduced as the App\Library\Imap\Message\Message class. However, for example, this 
class can be replaced using the App\Library\Imap\Client::setPrototype() method to 
anything of the developer’s choosing. For example, one could implement an Eloquent 
model implementing the described interface and use it as a way to return email messages 
from the client that can also be easily saved to the database. 

For the sake of brevity we will provide the implementation of the 
App\Library\Imap\Message\Message class without including the various standard 
“getter” and “setter” methods available to it, but only expound on those methods with 
substantive logic. Please refer to the complete source code if you would like to examine 
those methods not discussed. 

Let us first start with the constructor for the class, which accepts a single parameter (the 
IMAP connection for the message). It is a straightforward constructor that simply sets the 
default Date and Time of the message to the present time for consistency within the object: 
public function __construct($connection) 

{ 

    $this->_date = new \DateTime('now'); 

     

    if(!is_resource($connection)) { 

        throw new \InvalidArgumentException("Constructor must be passed IMAP 
resource"); 

    } 

     

    $this->_connection = $connection; 

} 

The intended use of this object as you have previously seen in the code for the IMAP client 
we have created is to on a basic level provide a wrapper to the various properties of a single 
email message retrieved from a call to imap_fetch_overview(). However, it was 
implemented in an object-oriented fashion to expand upon that basic information to include 



Chapter 29  Building a Web-Based Email Client with Laravel Part II 
 

29-21 
 

the body of the email as well. Specifically, our message class implements the fetch() 
method, which, when populated with the basic parts of the message by the client, uses the 
PHP IMAP extension to download and process the full content of the email it represents 
from the mailbox. This method is defined as follows: 
public function fetch(int $options = 0) : self 

{ 

    $structure = imap_fetchstructure($this->_connection,   

                        $this->getMessageNo(), $options); 

     

    if(!$structure) { 

        return $this; 

    } 

     

    switch($structure->type) { 

        case TYPEMULTIPART: 

        case TYPETEXT: 

            $this->processStruct($structure); 

            break; 

        case TYPEMESSAGE: 

            break; 

        case TYPEAPPLICATION: 

        case TYPEAUDIO: 

        case TYPEIMAGE: 

        case TYPEVIDEO: 

        case TYPEMODEL: 

        case TYPEOTHER: 

            break; 

    } 

     

    return $this; 

} 

As is shown, the fetch() method uses the imap_fetchstructure() method explained 
earlier in this chapter to retrieve the general structure of the body of the email in question. 
Based on the type property of the root of the email body we can further process the contents 
of the email appropriately. For the purposes of our library we are only interested in two 
types when it comes to the “root body” of the email: plain text and MIME multipart emails. 
These two combined constitute the vast majority of emails in the world today and should be 
sufficient for our discussions. For both of these root structure types, we handle them using 
the processStruct() method that will be explained next. 

The App\Library\Imap\Message\Message::processStruct() method is the most 
complicated code discussed in this chapter. Its function is to take a root-level structure array 
from the imap_fetchstructure() function and, if it is plain text or a multipart MIME 



Chapter 29  Building a Web-Based Email Client with Laravel Part II 
 

29-22 
 

message, deconstruct it into its component parts. Due to the nature of a multipart MIME 
message, the processStruct() method is a recursive method, calling itself repeatedly as it 
processes deeper and deeper into a multipart MIME message. Here is the logic of the 
method: 
protected function processStruct($structure, $partId = null) 

{ 

    $params = []; 

    $self = $this; 

     

    $recurse = function($struct) use ($partId, $self) { 

        if(isset($struct->parts) && is_array($struct->parts)) { 

             

            foreach($struct->parts as $idx => $part) { 

                $curPartId = $idx +1; 

 

                if(!is_null($partId)) { 

                    $curPartId = $partId . '.' . $curPartId; 

                } 

                 

                $self->processStruct($part, $curPartId); 

            } 

        } 

         

        return $self; 

    }; 

     

    if(isset($structure->parameters)) { 

        foreach($structure->parameters as $param) { 

           $params[strtolower($param->attribute)] = $param->value;      

        } 

    } 

     

    if(isset($structure->dparameters)) { 

        foreach($structure->dparameters as $param) { 

            $params[strtolower($param->attribute)] = $param->value; 

        } 

    } 

     

    if(isset($params['name']) || isset($params['filename']) || 

       (isset($structure->subtype) &&  

strtolower($structure->subtype) == 'rfc822')) { 

         



Chapter 29  Building a Web-Based Email Client with Laravel Part II 
 

29-23 
 

        // Process attachement 

            

           $filename = isset($params['name']) ? $params['name'] : 
$params['filename']; 

            

           $attachment = new Attachment($this); 

            

           $attachment->setFilename($filename) 

                      ->setEncoding($structure->encoding) 

                      ->setPartId($partId) 

                      ->setSize($structure->bytes); 

                       

           switch($structure->type) { 

               case TYPETEXT: 

                   $mimeType = 'text'; 

                   break; 

               case TYPEMESSAGE: 

                   $mimeType = 'message'; 

                   break; 

               case TYPEAPPLICATION: 

                   $mimeType = 'application'; 

                   break; 

               case TYPEAUDIO: 

                   $mimeType = 'audio'; 

                   break; 

               case TYPEIMAGE: 

                   $mimeType = 'image'; 

                   break; 

               case TYPEVIDEO: 

                   $mimeType = 'video'; 

                   break; 

               default: 

               case TYPEOTHER: 

                   $mimeType = 'other'; 

                   break; 

           } 

            

           $mimeType .= '/' . strtolower($structure->subtype); 

            

           $attachment->setMimeType($mimeType); 

            

           $this->_attachments[$partId] = $attachment; 

            



Chapter 29  Building a Web-Based Email Client with Laravel Part II 
 

29-24 
 

           return $recurse($structure); 

    } 

     

    if(!is_null($partId)) { 

        $body = imap_fetchbody($this->_connection,  

                               $this->getMessageNo(), $partId, FT_PEEK); 

    } else { 

        $body = imap_body($this->_connection, $this->getUID(),  

                          FT_UID | FT_PEEK); 

    } 

     

    $encoding = strtolower($structure->encoding); 

     

    switch($structure->encoding) { 

        case 'quoted-printable': 

        case ENCQUOTEDPRINTABLE: 

            $body = quoted_printable_decode($body); 

            break; 

        case 'base64': 

        case ENCBASE64: 

            $body = base64_decode($body); 

            break; 

    } 

     

    $subtype = strtolower($structure->subtype); 

     

    switch(true) { 

        case $subtype == 'plain': 

            if(!empty($this->_plainBody)) { 

                $this->_plainBody .= PHP_EOL . PHP_EOL . trim($body); 

            } else { 

                $this->_plainBody = trim($body); 

            } 

            break; 

        case $subtype == 'html': 

            if(!empty($this->_htmlBody)) { 

                $this->_htmlBody .= '<br><br>' . $body; 

            } else { 

                $this->_htmlBody = $body; 

            } 

            break; 

    } 



Chapter 29  Building a Web-Based Email Client with Laravel Part II 
 

29-25 
 

     

    return $recurse($structure); 

} 

It is reasonable for the first reaction to such a complicated function would be to feel 
daunted, but we will break its operations down step by step. We start by initializing a few 
variables to be used, followed by defining the $recurse variable, which is actually an 
anonymous function. This anonymous function’s purpose is to determine if, for the given 
“part” of the MIME email we are working with, that part itself contains any other sub-parts. 
If it does, we recurse into the processStruct() method, again this time performing the 
same operations on the child parts. Thus, starting with the root structure, we traverse into 
the child structures recursively pulling out all relevant data: 
    $recurse = function($struct) use ($partId, $self) { 

        if(isset($struct->parts) && is_array($struct->parts)) { 

             

            foreach($struct->parts as $idx => $part) { 

                $curPartId = $idx +1; 

 

                if(!is_null($partId)) { 

                    $curPartId = $partId . '.' . $curPartId; 

                } 

                 

                $self->processStruct($part, $curPartId); 

            } 

        } 

         

        return $self; 

    }; 

You will note that when the processStruct() method was called from the fetch() 
method above we only passed the structure array returned by imap_fetchstructure(), 
where in our anonymous function $recurse we provide two parameters: the first, the child 
structure we wish to process next and secondly, a parameter we build in the $curPartId 
variable. 

In a multipart MIME message, a good way to think of it is as a tree of nodes, each node 
consisting of a portion of the content of the email message. For example, let’s say you have 
a hypothetical email message that is available both as formatted text as well as audio, and 
also includes an attachment. As a multipart MIME message, the hierarchical structure of 
such an email would be as shown in Figure 29.1. 



Chapter 29  Building a Web-Based Email Client with Laravel Part II 
 

29-26 
 

 
Figure 29.1. Structure of an email message.  

As you can see, the email would be broken down into three primary parts, the text portion 
of the email, the audio portion of the email, and the attached file. For each of these parts, 
however, there may be multiple sub-parts. In this case, for the text portion there are two 
different versions provided, a plaintext version (text/plain) and an HTML-formatted version 
(text/html). Likewise for the audio portion, two different versions are provided as a wav file 
(audio/wav) and an MP3 file (audio/mp3). The attachment, however, does not have a need 
for any additional parts. 

If you were to designate each part by some sort of ID, an easy approach would be to 
number them based on the relative depth, such as shown in Figure 29.2. 

 

Figure 29.2. Numbering each part. 

Using a numbering scheme such as this, the plain text version of the email message would 
be represented by the string “1.1.1”, where the Wav version of the audio message would be 
identified by “1.2.1” and the attached file would simply be “1.3”. 

This string is known as a part identifier, and it is used by the PHP IMAP extension to 
identify which portion of a multipart message you are referring to in operations. As our 
processStruct() method recursively traverses the contents of the message, node by node, 
we build an appropriate part identifier representing it for use later in the method. 

The next step in our processStruct() method is to combine the part parameters and 
disposition parameters (if they exist) into a single array, $params. By convention, the part 
parameters and disposition parameters never use the same identifiers even though the 

E-mail Message

text/html

text/plain

Audio Message
audio/wav

audio/mp3

File Attachment application/zip

Root

E-mail Message (1)

text/html (1)

text/plain (2)

Audio Message (2)
audio/wav (1)

audio/mp3 (2)

File Attachment (3) application/zip

Root (1)



Chapter 29  Building a Web-Based Email Client with Laravel Part II 
 

29-27 
 

MIME specifically technically allows for it. Since in practicality there is no need to 
distinguish them, combining them and formatting them into a normalized list (by 
lowercasing all the identifiers) allows us to quickly find what we are looking for later: 
if(isset($structure->parameters)) { 

        foreach($structure->parameters as $param) { 

           $params[strtolower($param->attribute)] = $param->value; 

        } 

    } 

     

    if(isset($structure->dparameters)) { 

        foreach($structure->dparameters as $param) { 

            $params[strtolower($param->attribute)] = $param->value; 

        } 

    } 

Next we look at the current part we are processing to determine if we think it is a file 
attachment or not. We do this by examination of various values available to us, such as the 
aforementioned parameters, and subtype the type the part in question is identified as. For 
our purposes we specifically look to see if the ‘name’ or ‘filename’ parameter has been 
provided for this part, which generally means it is an attachment. Additionally, we examine 
to see if a subtype was specified and if it is equal to ‘rfc822’, which would also indicate an 
attachment. 
if(isset($params['name']) || isset($params['filename']) || 

       (isset($structure->subtype) &&  

strtolower($structure->subtype) == 'rfc822')) { 

         

        // Process attachement 

            

           $filename = isset($params['name']) ? $params['name'] : 
$params['filename']; 

            

           $attachment = new Attachment($this); 

            

           $attachment->setFilename($filename) 

                      ->setEncoding($structure->encoding) 

                      ->setPartId($partId) 

                      ->setSize($structure->bytes); 

                       

           switch($structure->type) { 

               case TYPETEXT: 

                   $mimeType = 'text'; 

                   break; 

               case TYPEMESSAGE: 



Chapter 29  Building a Web-Based Email Client with Laravel Part II 
 

29-28 
 

                   $mimeType = 'message'; 

                   break; 

               case TYPEAPPLICATION: 

                   $mimeType = 'application'; 

                   break; 

               case TYPEAUDIO: 

                   $mimeType = 'audio'; 

                   break; 

               case TYPEIMAGE: 

                   $mimeType = 'image'; 

                   break; 

               case TYPEVIDEO: 

                   $mimeType = 'video'; 

                   break; 

               default: 

               case TYPEOTHER: 

                   $mimeType = 'other'; 

                   break; 

           } 

            

           $mimeType .= '/' . strtolower($structure->subtype); 

            

           $attachment->setMimeType($mimeType); 

            

           $this->_attachments[$partId] = $attachment; 

            

           return $recurse($structure); 

    } 

If, based on the parameters and subtype of the part, we determine that it is an attachment, 
we create an instance of a yet-introduced Attachment class to represent it and add it to the 
Message::$_attachments array property using the part ID as its key. For the attachment 
object we make sure to include the encoding type used (which is the way the attachment 
was encoded in the email – for example base64), and based on the type of the part we can 
determine the nature of the attachment itself. We will come back to attachments later, but 
for now we are only interested in extracting such an attachment for later processing. Once 
we have done this we are done for the moment and thus we call our anonymous function 
$recurse to determine if any sub parts exist and start the process over again. 

If the part we are examining is not in our assessment an attachment to the email, then it 
must be some portion of the actual message itself. Thus, we need to retrieve the content of 
the part and determine what to do with it. For the sake of simplicity we assume that if the 
content of the part is not an attachment, then it must be part of the actual email message. 
Furthermore, we assume that the actual email message will be either in HTML or plain text 
format (perhaps both). 



Chapter 29  Building a Web-Based Email Client with Laravel Part II 
 

29-29 
 

The first step is to actually extract this non-attachment content from the segment. If we 
have been given a part identifier when the processStruct() method was called we use the 
imap_fetchbody() function to retrieve that specific part from the message. If we haven’t 
been given a part identifier, then this is not a multiple MIME message and the body is 
simply the body of the email, and as such we use the imap_body() function to retrieve it. 
In both cases, we make sure to specify the FT_PEEK constant so we don’t mark the message 
as “seen” when we get this data: 
if(!is_null($partId)) { 

        $body = imap_fetchbody($this->_connection,  

                               $this->getMessageNo(), $partId, FT_PEEK); 

    } else { 

        $body = imap_body($this->_connection, $this->getUID(),  

                          FT_UID | FT_PEEK); 

    } 

Next, we must decode the body we’ve extracted from whatever encoding was used into its 
original form by looking at the current structure’s encoding property and, based on the 
encoding specified, decode it using the appropriate PHP function. For the sake of simplicity 
we only support three encoding types: plain text (no decoding require), quoted-printable, 
and base64: 
switch($structure->encoding) { 

        case 'quoted-printable': 

        case ENCQUOTEDPRINTABLE: 

            $body = quoted_printable_decode($body); 

            break; 

        case 'base64': 

        case ENCBASE64: 

            $body = base64_decode($body); 

            break; 

    } 

At this point in the execution of the processStruct() method we have determined a few 
things. Firstly, we have determined this segment is not an attachment, which by our 
processor means it must be part of the actual message. Secondly, we have extracted this 
message and decoded it into its original form. Next, we need to try to determine the nature 
of this message, specifically determine if it is a plain text message or if it is HTML 
formatted. To do this, we examine the subtype property of the structure and, based on this 
subtype, behave accordingly: 
$subtype = strtolower($structure->subtype); 

     

    switch(true) { 

        case $subtype == 'plain': 

            if(!empty($this->_plainBody)) { 

                $this->_plainBody .= PHP_EOL . PHP_EOL . trim($body); 



Chapter 29  Building a Web-Based Email Client with Laravel Part II 
 

29-30 
 

            } else { 

                $this->_plainBody = trim($body); 

            } 

            break; 

        case $subtype == 'html': 

            if(!empty($this->_htmlBody)) { 

                $this->_htmlBody .= '<br><br>' . $body; 

            } else { 

                $this->_htmlBody = $body; 

            } 

            break; 

    } 

For our purposes, we only support either plain or HTML versions of a message, with all 
other sub types being ignored. For plain text messages we assign the content of the part to 
the Message::$_plainBody property, where for HTML we similarly assign it to the 
Message::$_htmlBody property. Note that it is possible that a single email message may 
have multiple segments that contain plain text or HTML, thus in order to ensure all are 
rendered we include logic to simply append the additional content to the appropriate 
property.  

With all of the necessary steps complete, we again call the $recurse method to process any 
sub types that might exist. Eventually, all of the recursive calls to the processStruct() 
method will return and the end result will be that the Message::$_htmlBody, 
Message::$_plainBody, and Message::$_attachments properties will all be populated 
with the contents of the message in question for use elsewhere in the application. 

The Attachment Class 
As the result of calling Message::fetch() and, in turn, the processStruct() method, one 
or more Attachment classes previously introduced will be created. Each of these objects 
constitutes a single attachment within a given email message. To round out our IMAP 
library for this chapter, let’s briefly talk about it now. As was the case for the Message 
class, we will forego including in our discussion “getter” and “setter” methods and only 
focus on that which is of educational meaning. 

Like email messages themselves, and the Message class, the actual content of an attachment 
is not retrieved from the server until it is explicitly requested. Thus, while calling the 
Message::fetch() method will retrieve the email message in question and define all of the 
attachments included within it, we do not actually populate the content of the attachment 
until its own fetch() method has been called as shown below: 
public function fetch() : self 

{ 

    $body = imap_fetchbody( 

                $this->_message->getConnection(), 

                $this->_message->getMessageNo(), 



Chapter 29  Building a Web-Based Email Client with Laravel Part II 
 

29-31 
 

                $this->_partId, 

                FT_PEEK); 

     

    switch($this->getEncoding()) { 

        case 'quoted-printable': 

        case ENCQUOTEDPRINTABLE: 

            $body = quoted_printable_decode($body); 

            break; 

        case 'base64': 

        case ENCBASE64: 

            $body = base64_decode($body); 

            break; 

    } 

     

    $this->setData($body); 

     

    return $this; 

} 

After discussing in depth the Message::processStruct() method, there should be nothing 
in the Attachment::fetch() method that does not make sense. Like before, we use the 
imap_fetchbody() function to retrieve the specific relevant part of the email message that 
contains the content of the attachment. Then the body of the attachment is decoded based 
on the specified encoding before it is simply set using the setData() method. Once 
completed the class now contains the full, decoded contents of the attachment of the email 
and it can be then sent to the user for download, saved to the file system, etc. 

We will circle back on Attachments again later as we implement the actual web interface of 
our web-based email client. 

Pulling it All Together to Build a Web-based Email 
Client 
We’ve discussed a lot of different technologies in these two chapters, from the PHP IMAP 
extension (which we have used to implement a simple object-oriented library to interact 
with) to an introduction to the Laravel framework. Now, we are going to pull all of these 
technologies together into the final product – a simple web-based IMAP email client (using 
the IMAP server provided by your standard Google Gmail account).  

We are going to start the process of building this web-based email client using a standard 
base Laravel 5 project as described in the previous chapter. The first thing that needs to be 
done once we have created our Laravel project is to incorporate the second piece of 
technology we’ve built, which is the object-oriented library that was built using the PHP 
IMAP extension. We will put this library in the app\Library\Imap directory so that it will 



Chapter 29  Building a Web-Based Email Client with Laravel Part II 
 

29-32 
 

be automatically available in the App\Library\Imap namespace throughout the Laravel 
project. 

Thanks to the Laravel framework itself, as well as the work we’ve already done in making 
this simple IMAP library, building a web-based email client is really just a matter of 
attaching this library and creating the necessary controllers and views in our Laravel 
project. Let’s start by wiring in the IMAP library we have created by creating a Service 
Provider for it. 

Implementing the ImapServiceProvider 
We will create a simple Laravel Service Provider, the 
App\Providers\ImapServiceProvider class, to gain access to our IMAP client library. If 
you will recall from earlier in this chapter our library implemented a connection class 
GmailConnection() that served as the entry point into accessing an IMAP server through 
our library. The purpose of the Laravel Service Provider we are creating then will be to 
provide to our Laravel application this connection class in such a way that it is ready to be 
used without the need to further configure it. 

For this, we will register from our Service Provider class a new singleton container that will 
be responsible for configuring the connection and return an instance ready to use: 
<?php 

 

namespace App\Providers; 

 

use Illuminate\Support\ServiceProvider; 

use App\Library\Imap\GmailConnection; 

 

class ImapServiceProvider extends ServiceProvider 

{ 

    public function register() 

    { 

        $this->app->singleton('Imap\Connection\GMail', function($app) { 

            return new GmailConnection( 

                           config('imap.gmail.options'), 

                           config('imap.gmail.retries') 

                           config('imap.gmail.params') 

            ); 

        }); 

    } 

} 

Looking at the register() method of our Service Provider class, we include a simple 
amount of logic to register a closure to be executed any time something in the application 
requests an instance of the class identified as 'Imap\Connection\Gmail'. This closure 



Chapter 29  Building a Web-Based Email Client with Laravel Part II 
 

29-33 
 

itself is also simple, only returning an instance of the GmailConnection() class of our 
library and injecting configuration values into it. The source of the configuration values is 
the Laravel application configuration, where a reference such as imap.gmail.retries 
refers to the config/imap.php file, which should return an array containing the key 
‘retries’. Thus, if this file exists and has an array with the ‘retries’ key set, the value will be 
injected as the second parameter here. If no value exists, the Laravel config() function 
returns null. 

Before this Service Provider will be used by our application, we must tell the Laravel 
framework of its existence. This is done by modifying the ‘providers’ key of the 
config/app.php configuration file and adding the following value to the array: 
App\Providers\ImapServiceProvider::class 

Being added, among other techniques, retrieval of the singleton instance of our fully 
configured GmailConnection class can now be done using the Laravel App::make() 
method and specifying the object reference string mentioned: 
$gmailConnection = \App::make('Imap\Connection\Gmail'); 

The Web Client Authentication Page 
For our purposes the authentication page of the client should accept a Google Gmail 
username and password as form inputs. These inputs will be taken by our application and 
we will attempt to authenticate against the IMAP server using them. Assuming we are 
successful in our authentication we will then store those credentials in the user’s session for 
use elsewhere. If the authentication is not successful, we will inform the user and ask them 
to try again. 

Let’s start by creating the actual HTML view of the authentication page. For the sake of 
versatility, we will break this as demonstrated before into two blade templates. One, will be 
a generic layout template and the second will be the specific content of our login page form. 
This is done so that, if so desired, you can expand the non-authenticated portion of this web 
client easily from an HTML perspective. The layout blade template we will create should 
be stored in the resources/views/layouts/public.blade.php file and contain the 
following basic HTML: 
<html> 

<head> 

    @section('stylesheets') 

    <link rel="stylesheet" 
href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.min.css" 
integrity="sha384-1q8mTJOASx8j1Au+a5WDVnPi2lkFfwwEAa8hDDdjZlpLegxhjVME1fgjWPGmkzs7" 
crossorigin="anonymous"> 

    <link rel="stylesheet" 
href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap-theme.min.css" 
integrity="sha384-fLW2N01lMqjakBkx3l/M9EahuwpSfeNvV63J5ezn3uZzapT0u7EYsXMjQV+0En5r" 
crossorigin="anonymous"> 

    @show 



Chapter 29  Building a Web-Based Email Client with Laravel Part II 
 

29-34 
 

</head> 

<body> 

    <div class="container"> 

     

    @if (count($errors) > 0) 

        <div class="alert alert-danger"> 

            <ul> 

                @foreach ($errors->all() as $error) 

                    <li>{{ $error }}</li> 

                @endforeach 

            </ul> 

        </div> 

    @endif 

     

    @yield('main') 

    </div> 

</body> 

    @section('javascript') 

    <script 
src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/js/bootstrap.min.js" 
integrity="sha384-0mSbJDEHialfmuBBQP6A4Qrprq5OVfW37PRR3j5ELqxss1yVqOtnepnHVP9aJ7xS" 
crossorigin="anonymous"></script> 

    @show 

</html> 

To greatly simplify the necessary layout and styling of our web site we are going to use the 
Bootstrap CSS framework as a foundation. Looking at the layout, one can see we define a 
number of blade sections which can later be extended as necessary in child blade templates. 
Specifically, we define the ‘stylesheets’ section (which is located in the <head> tag of our 
document) to make references to stylesheets we might use and includes the necessary 
Bootstrap framework stylesheet, and the ‘javascript’ section located at the bottom of the 
layout to include the necessary JavaScript code used by the Bootstrap framework. We 
include the JavaScript at the bottom and the stylesheets at the top because browsers 
typically load resources in order that they are referenced, and thus it is a best practice to 
always load the JavaScript for a given page after the rest of the content itself has loaded. 

You’ll also note in our layout that we include a conditional checking of the $errors 
variable. In blade templates there is always available an $errors object that serves as a 
standard structure wherein Laravel stores error messages to be displayed in a view 
generated within a controller. We will look at that aspect of this in a moment, but for now 
simply note we include this in the layout so that for any view extending it we provide a 
standard means of rendering errors to users. 

This layout is extended by the specific content for rendering the authentication form we 
need, which will be stored in the resources/auth/login.blade.php file and should look 
as follows: 



Chapter 29  Building a Web-Based Email Client with Laravel Part II 
 

29-35 
 

@extends('layouts.public') 

 

@section('main') 

<div class="col-lg-5 col-lg-offset-2"> 

    <div class="panel panel-default"> 

        <div class="panel-heading"> 

            Please Login 

        </div> 

        <div class="panel-body"> 

            <form action="/auth/login" method="POST"> 

                {!! csrf_field() !!} 

                <div class="form-group"> 

                    <label for="email">GMail Username</label> 

                    <input type="text" name="email" id="email" 
placeholder="user@gmail.com"> 

                </div> 

                <div class="form-group"> 

                    <label for="password">GMail Password</label> 

                    <input type="password" name="password" id="password"> 

                </div> 

                <div class="form-group"> 

                    <input type="checkbox" name="remember"> Remember Me 

                </div> 

                <button class="btn btn-block btn-primary" type="submit"><i 
class="glyphicon glyphicon-lock"></i> Login</button> 

            </form> 

        </div> 

    </div> 

</div> 

@stop 

By in large this view template is basically just as you would expect, an HTML form that 
provides a means for the user to input their authentication credentials. The only notable 
aspects of it are that, because it extends from the layouts.public blade template, it 
incorporates this layout when rendering and the inclusion of {!! csrf_field() !!} 
immediately following the <form> tag. This is a template function provided by Laravel to 
inject a special hidden HTML form field designed to prevent cross-site request forgery 
(CSRF) security vulnerabilities.  

With our views created we now need to build the logic behind their function. We will start 
with defining the necessary route. In this project this route and its corresponding logout route 
serves as the sole non-authenticated route in our entire application. Since these routes are also 
designed to be executed via an HTTP request we want to apply the ‘web’ middleware to the 
request as well (provided by the Laravel framework). Thus, we define in our 
app/routes.php file the following routes: 



Chapter 29  Building a Web-Based Email Client with Laravel Part II 
 

29-36 
 

Route::group(['middleware' => ['web']], function() { 

    Route::get('auth/login', [ 

        'as' => 'login', 

        'uses' => 'Auth\AuthController@getLogin' 

    ]); 

     

    Route::get('auth/logout', 'Auth\AuthController@getLogout'); 

    Route::post('auth/login', 'Auth\AuthController@postLoginGMail'); 

}); 

Now defined, we can implement our App\Http\Controllers\Auth\AuthController class 
that will contain the actual logic of the login form.  
<?php 

 

namespace App\Http\Controllers\Auth; 

 

use App\User; 

use Validator; 

use App\Http\Controllers\Controller; 

use Illuminate\Foundation\Auth\ThrottlesLogins; 

use Illuminate\Foundation\Auth\AuthenticatesAndRegistersUsers; 

use Illuminate\Foundation\Auth\AuthenticatesUsers; 

use Illuminate\Http\Request; 

use App\Library\Imap\ImapException; 

 

class AuthController extends Controller 

{ 

    use AuthenticatesUsers; 

 

    public function __construct() 

    { 

        $this->middleware('guest', ['except' => 'logout']); 

    } 

 

    public function postLoginGMail(Request $request) 

    { 

        $connection = \App::make('Imap\Connection\GMail'); 

         

        $connection->setUsername($request->get('email')) 

                   ->setPassword($request->get('password')); 

         

        try { 

            $client = $connection->connect(); 



Chapter 29  Building a Web-Based Email Client with Laravel Part II 
 

29-37 
 

        } catch(ImapException $e) { 

            return $this->sendFailedLoginResponse($request); 

        } 

         

        $credentials = [ 

            'user' => $request->get('email'), 

            'password' => $request->get('password') 

        ]; 

         

        \Session::put('credentials', $credentials); 

         

        return redirect('inbox'); 

    } 

} 

Even though there isn’t a lot of code in our authentication controller, there is more going on 
than meets the eye. The AuthController class only specifies two methods, one of which is 
the class constructor, but relies on the Laravel-provided AuthenticatesUsers trait to fill in 
the gaps. This trait implements the methods needed to render the login form, handle logging 
out, etc. 

Thus, the logic of authentication is handled in the following manner: 

1. Render the Login form (handled by the AuthenticatesUsers trait) 

2. Submit the login form (handled by AuthController::postLoginGMail()) 

3. Logout the user (handled by the AuthenticatesUsers trait) 

The only method actually implemented by us in AuthController is the 
postLoginGMail() method, which uses the singleton client provided by our Service 
Provider to set the username and password given to us by the user and attempt to connect to 
the IMAP server using it. If this connection fails, the connect() method will throw an 
ImapException error that we can catch to respond to the user that authentication failed. If 
the authentication was successful, we store the credentials in a session variable ‘credentials’ 
using the Session::put() method and redirect the user to the named route ‘inbox’. 

One aspect that we have not yet discussed is how the application will be able to determine 
an authenticated user who should be given access to the (yet to be shown) authenticated 
routes vs. an unauthenticated user who can only access the login page. In Laravel this is 
done via Middleware as previously discussed earlier in the chapter. For our purposes, we 
will need to modify the default App\Middleware\Authenticate class provided in a basic 
Laravel project to judge if the user is authenticated by our own unique means. Specifically, 
access should be allowed or denied based on the existence of the ‘credentials’ Session 
variable set in the postLoginGMail() method of the AuthController. Here’s what our 
modified Authenticate class looks like: 
<?php 



Chapter 29  Building a Web-Based Email Client with Laravel Part II 
 

29-38 
 

 

namespace App\Http\Middleware; 

 

use Closure; 

use Illuminate\Support\Facades\Auth; 

 

class Authenticate 

{ 

    public function handle($request, Closure $next, $guard = null) 

    { 

         

        if(!\Session::has('credentials')) { 

            if($request->ajax()) { 

                return response('Unauthorized.', 401); 

            } 

             

            return redirect()->guest('auth/login'); 

        } 

         

        return $next($request); 

    } 

} 

As with most Laravel middleware, a single method handle() is implemented that is 
provided an instance of the request and a closure representing the “next” middleware to be 
executed in the chain. In this method we determine if the ‘credentials’ session variable 
exists and use that to determine if the user is “authenticated” or not. If they are not 
authenticated we redirect the user to the login page for a normal request or simply return a 
401 HTTP error if the request was done via AJAX. If, however, we determine the user is 
indeed authenticated we do nothing to change the flow and simply call the next middleware 
in the chain. 

Putting all of these things together we now have a primitive demonstration of a custom 
Google Gmail authentication mechanism for our IMAP web client and can now move on to 
implementing the actual feature set of the client itself. 

Implementing the Main View 
Moving forward, all of the logic of our web-based email client will be contained within a 
single controller class App\Http\Controllers\InboxController for simplicity. In a more 
complicated application it would be wise to separate logic into multiple controllers, but for 
the sake of demonstration this will not be necessary here.  

The features we will be implementing largely reflect the features of the IMAP library we 
built earlier in the chapter: 



Chapter 29  Building a Web-Based Email Client with Laravel Part II 
 

29-39 
 

▪ Retrieve a list of emails from a given mailbox. 

▪ Display a list of available mailboxes and change between them. 

▪ Read a specific message inside of a given mailbox, including attachments. 

▪ Delete a specific message from a mailbox. 

▪ Compose a new message. 

For each of these tasks, the same formula will apply in terms of workflow of the 
application: 

▪ Ensure the user is authenticated. 

▪ Retrieve the credentials for the user from the session. 

▪ Use the IMAP library we built to connect to the server. 

▪ Perform some set of actions against the server. 

▪ Render the results to the user. 

As we discussed in the last section we have already modified Laravel’s built in middleware 
to work for our authentication needs. However, before this middleware will be used it needs 
to be registered to be used in conjunction with the relevant routes. So the first step in 
building out the remainder of our application is to define the routes we need and indicate 
that all of them must first pass an authentication check before being made available. To do 
this we will again return to our app/routes.php file and add a new route group employing 
our custom authentication middleware: 
Route::group(['middleware' => ['web', 'auth']], function () { 

     

    Route::get('inbox', [ 

        'as' => 'inbox', 

        'uses' => 'InboxController@getInbox' 

    ]); 

     

    Route::get('read/{id}', [ 

        'as' => 'read', 

        'uses' => 'InboxController@getMessage' 

    ])->where('id', '[0-9]+'); 

    

    Route::get('read/{id}/attachment/{partId}', [ 

        'as' => 'read.attachment', 

        'uses' => 'InboxController@getAttachment' 

    ])->where('partId', '[0-9]+(\.[0-9]+)*'); 

     



Chapter 29  Building a Web-Based Email Client with Laravel Part II 
 

29-40 
 

    Route::get('compose/{id?}', [ 

        'as' => 'compose', 

        'uses' => 'InboxController@getCompose' 

    ])->where('id', '[0-9]+'); 

     

    Route::get('inbox/delete/{id}', [ 

        'as' => 'delete', 

        'uses' => 'InboxController@getDelete' 

    ])->where('id', '[0-9]+'); 

     

    Route::post('compose/send', [ 

        'as' => 'compose.send', 

        'uses' => 'InboxController@postSend' 

    ]); 

     

}); 

As shown, we define a new route group that contains six routes matching roughly to the 
five features we are developing. There are six because, including attachments, two separate 
routes are needed to contain the logic for reading a message from a mailbox. 

Since the vast majority of the methods we implement will require a valid IMAP connection 
through the IMAP library previously developed, let’s start off by introducing the 
getImapClient() method, which simply returns a valid connected instance of our Imap 
client object: 
protected function getImapClient() 

{ 

    $credentials = \Session::get('credentials'); 

     

    $client = \App::make('Imap\Connection\GMail') 

                  ->setUsername($credentials['user']) 

                  ->setPassword($credentials['password']) 

                  ->connect(); 

     

    return $client; 

} 

Let’s now begin with the primary page of our application, the named route ‘inbox’, which 
is responsible for displaying to the user all of the email within a given mailbox in a pleasant 
and paginated form. The code for the 
\App\Http\Controllers\InboxController::getInbox() method is as follows: 
public function getInbox(Request $request) 

{ 

    $client = $this->getImapClient();     



Chapter 29  Building a Web-Based Email Client with Laravel Part II 
 

29-41 
 

 

    $currentMailbox = $request->get('box', $client->getCurrentMailbox()); 

 

    $mailboxes = $client->getMailboxes(); 

     

    if($currentMailbox != $client->getCurrentMailbox()) { 

         

        if(in_array($currentMailbox, $mailboxes)) { 

            $client->setCurrentMailbox($currentMailbox); 

        } 

    } 

 

    $page = $request->get('page', 1); 

    $messages = $client->getPage($request->get('page', 1)); 

     

    $paginator = new LengthAwarePaginator( 

            $messages,  

            $client->getCount(),  

            25,  

            $page, [ 

                'path' => '/inbox' 

    ]); 

     

    return view('app.inbox', compact('messages', 'mailboxes', 'currentMailbox', 
'paginator')); 

} 

The meat of the getInbox() method starts by determine the current mailbox we are 
working with. If no new mailbox is specified, we default to whatever the current mailbox of 
our IMAP client is. If the current mailbox has been changed compared to what the client is 
using, we update the current mailbox appropriately. We then call the client’s 
getMailboxes() method which, as previously discussed, returns a list of all the available 
mailboxes for this connection. We then retrieve the current page of emails within the 
current mailbox (using the page number specified by the user’s input) and create a Laravel 
paginator object to provide a means to paginate our results in the UI. Finally, we pass all of 
this data into the app.inbox view shown next to render it to the user: 

 
 Note 

The Laravel Paginator component is a useful class available in Laravel projects to provide 
painless pagination of large collections of data, such as we are potentially dealing with in an 
email mailbox. When working with native Laravel collections (such as when using Eloquent) this 
functionality is baked-in to models. Since we are doing something more unique we create an 
instance of the LengthAwarePaginator() manually and feed it the necessary data. Please see 
the Laravel documentation for a complete description of this component’s API. 



Chapter 29  Building a Web-Based Email Client with Laravel Part II 
 

29-42 
 

@extends('layouts.authed') 

 

@section('stylesheets') 

@parent 

<link href="/css/app.css" rel="stylesheet"/> 

@stop 

 

@section('main') 

<div class="row"> 

    <div class="col-md-3"> 

        <div class="text-center"><h2>Mailboxes</h2></div> 

        <div class="panel panel-default"> 

            <div class="panel-body"> 

                <a href="/compose" class="btn btn-primary btn-block">Compose</a> 

                <ul class="folders"> 

                    @foreach($mailboxes as $mailbox) 

                    <li> 

                        <a href="/inbox?box={{{ $mailbox }}}"><i class="glyphicon 
glyphicon-inbox"></i> {{{ $mailbox }}}</a> 

                    </li> 

                    @endforeach 

                </ul> 

            </div> 

        </div> 

    </div> 

    <div class="col-md-9"> 

    <div class="text-center"><h2>Webmail Demo - {{{ $currentMailbox }}}</h2></div> 

        <div class="panel panel-default"> 

            <div class="panel-body"> 

                <ul class="messages"> 

                     

                    @foreach($messages as $message) 

                    <li> 

                        <a href="/read/{{ $message->getMessageNo() }}" 
class="nohover"> 

                            <div class="header"> 

                                <span class="from"> 

                                    {{{ $message->getFrom() }}} 

                                    <span class="pull-right"> 

                                        {{{ $message->getDate()->format('F jS, Y 
h:i A') }}} 

                                    </span> 

                                </span> 



Chapter 29  Building a Web-Based Email Client with Laravel Part II 
 

29-43 
 

                                {{{ $message->getSubject() }}} 

                            </div> 

                        </a> 

                        <hr/> 

                    </li> 

                    @endforeach 

                </ul> 

            </div> 

        </div> 

        <div class="text-center"> 

            {{ $paginator->render() }} 

        </div> 

    </div> 

</div> 

@stop 

Looking at the app.inbox view, you will note that we are extending from a different yet-
introduced blade layout template, layouts.authed. This layout is identical to the 
layouts.public blade template we discussed when we looked at authentication but with 
one difference, which is that we include a number of conditionals that check session 
variables and render alert-bars to the user. This allows us, as you will see, to pass 
informational messages back to the user after an action is taken in an eloquent way. In the 
interest of completeness this new layout is also provided below: 
<html> 

<head> 

    @section('stylesheets') 

    <link rel="stylesheet" 
href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.min.css" 
integrity="sha384-1q8mTJOASx8j1Au+a5WDVnPi2lkFfwwEAa8hDDdjZlpLegxhjVME1fgjWPGmkzs7" 
crossorigin="anonymous"> 

    <link rel="stylesheet" 
href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap-theme.min.css" 
integrity="sha384-fLW2N01lMqjakBkx3l/M9EahuwpSfeNvV63J5ezn3uZzapT0u7EYsXMjQV+0En5r" 
crossorigin="anonymous"> 

    @show 

</head> 

<body> 

    <div class="container"> 

     

    @if (count($errors) > 0) 

        <div class="alert alert-danger"> 

            <ul> 

                @foreach ($errors->all() as $error) 

                    <li>{{ $error }}</li> 

                @endforeach 



Chapter 29  Building a Web-Based Email Client with Laravel Part II 
 

29-44 
 

            </ul> 

        </div> 

    @endif 

     

    @if(Session::has('success')) 

    <div class="alert alert-success" role="alert">{{ Session::get('success') 
}}</div> 

    @endif 

     

    @if(Session::has('error')) 

    <div class="alert alert-danger" role="alert">{{ Session::get('error') }}</div> 

    @endif 

     

    @if(Session::has('warning')) 

    <div class="alert alert-warning" role="alert">{{ Session::get('warning') 
}}</div> 

    @endif 

     

    @if(Session::has('info')) 

    <div class="alert alert-info" role="alert">{{ Session::get('info') }}</div> 

    @endif 

     

    @yield('main') 

    </div> 

</body> 

    @section('javascript') 

    <script 
src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/js/bootstrap.min.js" 
integrity="sha384-0mSbJDEHialfmuBBQP6A4Qrprq5OVfW37PRR3j5ELqxss1yVqOtnepnHVP9aJ7xS" 
crossorigin="anonymous"></script> 

    @show 

</html> 

Returning to the app.inbox layout, we divide the interface into two columns. The sidebar 
column, which lists the available mailboxes and the link to compose a new message, and 
the primary segment that renders the list of emails within the current inbox for the 
designated page, giving the user the ability to click on one to open it. At the bottom of the 
template we output the result of a call to the render() method of the $paginator we 
passed in, which automatically renders a nice widget that allows the user to move through 
the pages of messages within the inbox easily (Figure 29.3). 



Chapter 29  Building a Web-Based Email Client with Laravel Part II 
 

29-45 
 

 

Figure 29.3. An example output of the InboxController::getInbox() method. 

The next method piece of functionality to implement is the ability to read a message within 
a given Mailbox. Looking at our blade template for rendering the list of available emails, 
we can see the route used in our application /read/{id} mapping to the 
InboxController::getMessage() method. 

Implementing View Message 
The next piece of functionality we will implement is the ability for a user to read an email 
within the web client when clicked. This is handled by the 
InboxController::getMessage() method shown below: 
public function getMessage(Request $request) 

{ 

    $client = $this->getImapClient(); 

     

    $currentMailbox = $request->get('box', $client->getCurrentMailbox()); 

     

    $mailboxes = $client->getMailboxes(); 

     

    if($currentMailbox != $client->getCurrentMailbox()) { 

     

        if(in_array($currentMailbox, $mailboxes)) { 

            $client->setCurrentMailbox($currentMailbox); 

        } 

    } 

     

    $messageId = $request->route('id'); 

 

    $message = $client->getMessage($messageId)->fetch(); 



Chapter 29  Building a Web-Based Email Client with Laravel Part II 
 

29-46 
 

 

    return view('app.read', compact('currentMailbox', 'mailboxes', 'message')); 

} 

In a number of ways the InboxController::getMessage() method is similar to the 
InboxController::getInbox() method we just introduced, because both views share 
very similar requirements. Like the main view of our client, the view to read an email still 
shows the list of mailboxes, so both methods open with the same logic. The 
InboxController::getMessage() method distinguishes itself only in the last few lines 
where we retrieve the message ID of the message we would like to read from the route 
parameters (by using the Laravel Request::route() method) and then actually retrieving 
the details of the message by calling our IMAP client’s getMessage() method to return an 
“unloaded” version of the message and then the fetch() method, which actually 
downloads the message from the server. We then pass all of these pieces of data into the 
app.read view to be rendered, shown below: 
@extends('layouts.authed') 

 

@section('stylesheets') 

@parent 

<link href="/css/app.css" rel="stylesheet"/> 

@stop 

 

@section('main') 

<div class="row"> 

    <div class="col-md-3"> 

        <div class="text-center"><h2>Mailboxes</h2></div> 

        <div class="panel panel-default"> 

            <div class="panel-body"> 

                <a href="/compose" class="btn btn-primary btn-block">Compose</a> 

                <ul class="folders"> 

                    @foreach($mailboxes as $mailbox) 

                    <li> 

                        <a href="/inbox?box={{{ $mailbox }}}"><i class="glyphicon 
glyphicon-inbox"></i> {{{ $mailbox }}}</a> 

                    </li> 

                    @endforeach 

                </ul> 

            </div> 

        </div> 

    </div> 

     

    <div class="col-md-9"> 

    <div class="text-center"><h2>Webmail Demo - {{{ $currentMailbox }}}</h2></div> 

        <div class="panel panel-default"> 



Chapter 29  Building a Web-Based Email Client with Laravel Part II 
 

29-47 
 

            <div class="panel-body"> 

                <div class="header"> 

                    <span class="from"> 

                        {{{ $message->getFrom() }}} 

                    </span> 

                    <span class="subject"> 

                        {{{ $message->getSubject() }}} 

                        <span class="date"> 

                            {{{ $message->getDate()->format('F jS, Y') }}} 

                        </span> 

                    </span> 

                </div> 

                <hr/> 

                <div class="btn-group pull-right"> 

                    <a href="/compose/{{ $message->getMessageNo() }}" class="btn 
btn-default"><i class="glyphicon glyphicon-envelope"></i> Reply</a> 

                    <a href="/inbox/delete/{{ $message->getMessageNo() }}" 
class="btn btn-default"><i class="glyphicon glyphicon-trash"></i> Delete</a> 

                </div> 

                <div class="messageBody"> 

                {{ $message }} 

                @if(!empty($message->getAttachments())) 

                    <hr/> 

                    @foreach($message->getAttachments() as $part => $attachment) 

                        <a href="/read/{{ $message->getMessageNo() }}/attachment/{{ 
$part }}"><i class="glyphicon glyphicon-download-alt"></i> {{ $attachment-
>getFilename() }}</a><br/> 

                    @endforeach 

                @endif                             

                </div> 

            </div> 

        </div> 

    </div> 

</div> 

 

@stop 

Like the controller, the app.read blade template resembles the app.inbox template in most 
ways, except for the major content block of the template which renders a single message in 
a detailed view instead of a list of messages in the mailbox. This view also provides a 
number of actions to be taken, specifically replying and deleting the message. Looking at 
the content immediately following the body of the message, we can see a call to the 
message object’s getAttachments() method. Recalling from earlier in the chapter this 
method returns an array of our IMAP library’s Attachment class representing any 



Chapter 29  Building a Web-Based Email Client with Laravel Part II 
 

29-48 
 

attachments found for a given email message. Note that, like the message object, these 
Attachment classes do not actually download the content of their attachment until told to do 
so. This is a useful distinction, as for the sake of rendering the email message we do not 
need the full download of the attachment. Rather, in this view we iterate through the 
attachments and provide download links to each. 

Each download link maps to the route specified by 
/read/{messageId}/attachment/{partId}, and referring back to the routes we have 
defined this maps to the InboxController::getAttachment() method. Let’s take a look 
at this method now: 
public function getAttachment(Request $request) 

{ 

    $client = $this->getImapClient(); 

     

    $messageId = $request->route('id'); 

    $attachmentPart = $request->route('partId'); 

     

    $message = $client->getMessage($messageId)->fetch(); 

     

    $attachment = $message->getAttachmentByPartId($attachmentPart)->fetch(); 

     

    return response()->make($attachment->getData(), 200, [ 

        'Content-Type' => $attachment->getMimeType(), 

        'Content-Disposition' =>  

                "attachment; filename=\"{$attachment->getFilename()}\"" 

    ]); 

     

} 

The InboxController::getAttachment() method is unique among the controller 
methods we will look at because its output does not use the View component of Laravel. In 
this case, we want to present the data to the user as a downloadable file. To accomplish this, 
using the route parameters provided, first we download the message in question and then 
the specific attachment using our IMAP library. Once we have the data of the attachment, 
we use Laravel’s response() function to construct a custom HTTP response in lieu of 
rendering a blade template using the View component. The body of this response will be 
the data of the attachment, and the headers of the response will set the appropriate Content-
Type (as specified in the email) along with the Content-Disposition HTTP header. This 
header will inform the browser it should not attempt to immediately open and process the 
response, but rather save the response as a file using the filename specified in the header 
(also taken from the email). 

Implementing Deleting and Sending Message 



Chapter 29  Building a Web-Based Email Client with Laravel Part II 
 

29-49 
 

Next we need to implement the final two functional aspects of our project – deleting a 
message and sending messages. Deleting a message in our web client is the simplest of 
logical tasks in our project, implemented by the InboxController::getDelete() method 
shown, which simply uses the already written functionality within our IMAP client library 
to delete the message and redirect the user back to the primary interface: 
public function getDelete(Request $request)  

{ 

    $client = $this->getImapClient(); 

     

    $messageId = $request->route('id'); 

     

    $client->deleteMessage($messageId); 

     

    return redirect('inbox')->with('success', "Message Deleted"); 

} 

Note that, when we redirect the user after deleting the message we use the with() method 
to pass a message back to the user. This method takes two parameters, the first is the 
identifier for the message type (in this case ‘success’), and the second is the message itself. 
This message is stored in the session and destroyed after the completion of the next request 
and is displayed as part of the layouts.authed blade template discussed earlier, which 
renders the message if it exists in a pleasant alert bar. 

Next we need to implement sending messages. In a real-world web-based email client such 
as this, sending of messages would be handled through the corresponding SMTP servers of 
the IMAP client we were connecting to. However, this implementation is beyond the scope 
of this project and chapter. Rather, we will simply use Laravel’s built in mail-sending 
facilities. Technically this is not ideal, as Laravel’s mail facilities are almost certainly not 
the proper ones for the IMAP server we are connecting to, but it does however give us 
some degree of functionality. 

The first method we will look at for sending messages is the 
InboxController::getCompose() method. This method’s job is to render the UI for 
sending an email either as a new message or as a response to an existing email in the 
mailbox (a reply). The logic for this method is as follows: 
public function getCompose(Request $request)  

{ 

    $client = $this->getImapClient(); 

     

    $mailboxes = $client->getMailboxes(); 

     

    $messageId = $request->route('id'); 

     

    $quotedMessage = ''; 

    $message = null; 



Chapter 29  Building a Web-Based Email Client with Laravel Part II 
 

29-50 
 

     

    if(!is_null($messageId)) { 

        $message = $client->getMessage($messageId)->fetch(); 

        $quotedMessage = $message->getPlainBody(); 

         

        $messageLines = explode("\n", $quotedMessage); 

         

        foreach($messageLines as &$line) { 

            $line = ' > ' . $line; 

        } 

         

        $quotedMessage = implode("\n", $messageLines); 

    } 

     

    return view('app.compose', compact('quotedMessage',  

                                       'message', 'mailboxes')); 

} 

Because we want to be able to respond to messages as well as compose new messages, the 
InboxController::getCompose() message has slightly more logic within it than simply 
fetching the mailboxes and returning an HTML form for the user to enter their message 
into. If provided an ID of a message to reply to (an optional route parameter), this method 
needs to fetch the body of the message (in plain text) and “quote” it in the typical way for 
email clients. Since we don’t support sending HTML email in this project, this is simply a 
matter of some basic string manipulation, appending the string ">" to every line of the email 
we are responding to. This quoted message, the original message object, and mailbox list 
are then given to the view for render using the 
resources/views/app/compose.blade.php template: 
@extends('layouts.authed') 

 

@section('stylesheets') 

@parent 

<link href="/css/app.css" rel="stylesheet"/> 

@stop 

 

@section('main') 

<div class="row"> 

    <div class="col-md-3"> 

        <div class="text-center"><h2>Mailboxes</h2></div> 

        <div class="panel panel-default"> 

            <div class="panel-body"> 

                <a href="/compose"  

                   class="btn btn-primary btn-block">Compose</a> 



Chapter 29  Building a Web-Based Email Client with Laravel Part II 
 

29-51 
 

                <ul class="folders"> 

                    @foreach($mailboxes as $mailbox) 

                    <li> 

                        <a href="/inbox?box={{{ $mailbox }}}"> 

                           <i class="glyphicon glyphicon-inbox"></i>  

                           {{{ $mailbox }}} 

                        </a> 

                    </li> 

                    @endforeach 

                </ul> 

            </div> 

        </div> 

    </div> 

     

    <div class="col-md-9"> 

     

    <div class="text-center"> 

        @if(is_null($message)) 

        <h2>Webmail Demo - Compose</h2> 

        @else 

        <h2>Webmail Demo - Reply</h2> 

        @endif 

    </div> 

        <div class="panel panel-default"> 

            <div class="panel-body"> 

                <form action="/compose/send" method="post"> 

                    {!! csrf_field() !!} 

                    <div class="header"> 

                        @if(!is_null($message)) 

                            <span class="from"> 

                                From: <input class="form-control"  

                                       type="text" name="from"  

                                       value="{{ $message->getToEmail() }}"/> 

                            </span> 

                            <span class="to"> 

                                To: <input class="form-control"  

                                    type="text" name="to"  

                                    value="{{ $message->getFromEmail() }}"/> 

                            </span> 

                            <span class="subject"> 

                                Subject: <input type="text"  

                                 class="form-control" name="subject"   



Chapter 29  Building a Web-Based Email Client with Laravel Part II 
 

29-52 
 

                                 value="RE: {{{ $message->getSubject() }}}"/> 

                            </span> 

                        @else 

                            <span class="from"> 

                                From: <input type="text" name="from"  

                                             value="" class="form-control"/> 

                            </span> 

                            <span class="to"> 

                                To: <input class="form-control" type="text"  

                                           name="to" value=""/> 

                            </span> 

                            <span class="subject"> 

                                Subject: <input type="text" name="subject"  

                                          value="" class="form-control"/> 

                            </span> 

                        @endif 

                    </div> 

                    <hr/> 

                    <div class="messageBody"> 

                    <textarea class="form-control replybox"  

                   name="message" rows="10" >{{{ $quotedMessage }}}</textarea> 

                    </div> 

                    <hr/> 

                    <input type="submit" class="btn btn-block btn-primary"  

                           value="Send Email"/> 

                </form> 

            </div> 

        </div> 

    </div> 

</div> 

 

@stop 

This blade template is really two very similar templates in one. If we are provided a 
message (as indicated by whether the $message template variable is null or not), we 
provide a reply form that fills in the to, from, subject of the email, and also populates the 
body with the quoted response as generated in the controller. If we are not provided a 
message then we leave these fields blank, allowing the user to fill them in as necessary. The 
blade template, of course, also follows the same standards as the other views by displaying 
all of the mailboxes in the sidebar column and the compose form in the major column of the 
layout. 

The last step in our web-based email client is to implement the logic to actually send this 
email. This compose/reply form is submitted back to the server and ultimately handled by 



Chapter 29  Building a Web-Based Email Client with Laravel Part II 
 

29-53 
 

the InboxController::postSend() method. This is the method responsible for sending 
the email message using Laravel’s standard Mail component, and then redirecting the user 
back to the main view of our application. We also will make use of the Laravel validation 
component, which allows us a straightforward way to ensure the input data we have 
received makes sense before sending the email: 
public function postSend(Request $request)  

{ 

    $this->validate($request, [ 

        'from' => 'required|email', 

        'to' => 'required|email', 

        'subject' => 'required|max:255', 

        'message' => 'required' 

    ]); 

     

    $from = $request->input('from'); 

    $to = $request->input('to'); 

    $subject = $request->input('subject'); 

    $message = $request->input('message'); 

     

    \Mail::raw($message, function($message) use ($to, $from, $subject) { 

        $message->from($from); 

        $message->to($to); 

        $message->subject($subject); 

    }); 

     

    return redirect('inbox')->with('success', 'Message Sent!'); 

} 

The first step in any form submission should always be to verify and validate the input data 
received from the user as best as possible. This not only simplifies the handling of this data 
later on but can prevent significant security vulnerabilities. Laravel provides a very robust 
validation component just for this purpose, accessible using the validate() method built 
into every Laravel controller. 

The validate() method takes two parameters. The first is the input to validate, which can 
be any array or ArrayAccess object. In this case, we pass the Laravel Request class directly 
in as this parameter because it does implement the PHP ArrayAccess interface. The second 
parameter is an array of key/value pairs, where the key of each record is the name of the 
input variable in the first array, and the value is a string of validation rules. 

The full breadth of validation rules available to you as a developer through this component 
is well outside the scope of this Chapter. However, looking at our code we can see all rules 
follow the same basic format: 
 <rule>[:param1[,param2 [,…]]] 



Chapter 29  Building a Web-Based Email Client with Laravel Part II 
 

29-54 
 

Where <rule> is the name of the rule (see the Laravel Validator documentation for a list of 
rules) and each rule may have one or more parameters, indicated by first a colon then a 
comma-separated list of values. Not all rules have parameters, and each rule to be applied 
to an input variable should be separated by a pipe "|" character. 

We make use of the required, email, and max rules in our InboxController::postSend() 
method. The required rule, as its name implies, ensures the input variable exists. The email 
rule, as its name also implies, ensures the input matches what would be a valid email 
address (of course, we won’t know it for certain until the email is sent and received). The 
max rule imposes length restrictions on the content, in this case we ensure that the subject is 
no bigger than 255 characters.  

Calling the validate() method of a controller is enough to validate the input according to 
the rules. If the input is invalid, Laravel will automatically take the necessary steps to return 
the user to the form and inform them of their invalid entry. So, once we’ve validated the 
input, we can immediately begin processing it using whatever logic we choose. In our case, 
we immediately turn our attention to another Laravel component that we will use to send 
the message. 

Like Validation, the Mail component in the Laravel framework is very robust and its full 
set of features is outside of the scope of this Chapter. It can be said that it does easily allow 
you to send HTML as well as plaintext mail using a very wide range of transport methods 
from sendmail, all the way to email service providers like Mandrill. For our usage, we are 
going to use the Mail::raw() method to send a “raw” message without the benefit of a 
blade template to help us lay it out: 
\Mail::raw($message, function($message) use ($to, $from, $subject) { 

    $message->from($from); 

    $message->to($to); 

    $message->subject($subject); 

}); 

As shown, the first parameter of the Mail::raw() method is the content of the message 
body as a string, in this case exactly what we received from the user. The second parameter 
is a closure which accepts a Laravel message object. This closure allows you to build any 
logic needed to set the details of your message such as subject, from, and to fields as 
shown. Once the closure has been executed, Laravel will take this message object and 
proceed to send the message using the transport configured by the application. The result in 
our case is that we send the email composed by the user to the address specified. 

Conclusion 
If you’ve made it this far, then congratulations! You have been exposed to a huge amount 
of material covering how to build Laravel applications, the PHP IMAP extension, and even 
a little architectural work that builds a useful object-oriented library. Each of the subjects 
could be expanded upon into a chapter (or, in some cases, an entire book), so further study 



Chapter 29  Building a Web-Based Email Client with Laravel Part II 
 

29-55 
 

is left as an exercise for the reader. Here are two great resources for you to continue 
learning about subjects we’ve discussed here: 

▪ Laravel Framework Documentation:  https://laravel.com/docs/ 

▪ PHP 7 IMAP Extension Documentation: http://php.net/imap 


