
30
Social Media Integration

Sharing and Authentication

AS SOCIAL MEDIA CONTINUES TO BECOME A CORNERSTONE OF OUR INTERACTIONS, more and
more web applications benefit from the integration of these platforms. While each platform
implements these integrations in a different fashion (using their own web services, API
calls, etc.), there are common trends and approaches especially around the aspect of
authentication that have taken hold. In this chapter we will explore those common
technologies such as OAuth as well as how to perform a few common tasks with the
popular social media platform Instagram. Note that while in this chapter we will focus on
Instagram, the concepts and techniques described will apply to most all social media
platforms.

Web Service Authentication with OAuth
OAuth is an open-source standard for authorization, allowing users to log into other
websites using the credentials of the website they already have. Many blogs provide the
ability to log into the site using, for example, Instagram credentials. OAuth presently comes
in two similar yet incompatible versions, 1.0 and 2.0, with 2.0 being the most commonly
implemented. We will be discussing the implementation of OAuth 2.0 in this chapter,
however many of the concepts are similar for OAuth 1.0.

To understand OAuth we need to define the various entities or roles that interact in the
authentication process, which are as follows:

▪ Resource: The thing you want access to. Often in OAuth schemes a single
authorization is for access to multiple resources. For example, a user may wish to
grant access to a third party to view the follower list and post messages to their
Twitter account (where each is a separate resource).

▪ Owner: The owner of the resources in question.

▪ Resource Server: The website/server that controls the resources.

Chapter 30 Social Media Integration Sharing and Authentication

30-2

▪ Authorization Server: The website/server that is responsible for granting
authorization to the resources.

▪ Client: The application that would like access to the owner's resource(s).

Ultimately the goal is for the Authorization Server to give a Client access to one or more
Resources owned by the Owner, hosted on the Resource Server. In more visual terms, this
process looks somewhat like Figure 30.1.

Figure 30.1.

Note the diagram in Figure 30.1 is not necessarily the exact request flow between these
various entities. Depending on the nature of the authorization given by the user, the flow of
the requests may also change. Ultimately in all cases however, it is the goal of OAuth to
provide to the Client an access token that allows it to access the Resources the Owner has
granted access to.

There is obviously much more to OAuth than simply this diagram, so let's take a moment to
introduce a few more details. For starters, in order for a Client to participate in an OAuth
transaction it first must be known to the Authorization Server. That is to say, the client must
present credentials of its own to the Authorization Server alongside any Authorization
Grant. The Authorization Server then evaluates the request to the resources in question not
only by the grant provided by the Owner but also by the requesting Client's credentials.
Each Client must register in advance with the service in question (e.g., go to the developer
section of Twitter and register your application), and is granted a Client ID (public
information) and Client Secret (private to the Client) to use in the OAuth process.

Once registered, how the actual flow of the OAuth process works is going to largely depend
on the nature of the Grant being authorized by the Owner to the Client. OAuth 2.0 supports
four distinct grant types:

Service API

Client

Owner

Authorization
Server

Resource
Server

1

2

3

5

4

6

1. Client presents Request for Resource to Owner
(Authorization Request)

2. Owner Grants Authorization to Resource to Client

3. Client presents Authorization Grant to the
Authorization Server

4. Authorization Server issues an Access Token to
Client for the Resource

5. Client users Access Token to access the Resource
on the Resource Server

6. Resource Server returns protected Resource
to Client on behalf of Owner

Chapter 30 Social Media Integration Sharing and Authentication

30-3

▪ Authorization Code: Used for server-side applications (such as a PHP application)
that needs access to a resource.

▪ Implicit: Used for mobile applications, or applications that run entirely on a device
controlled by the Owner (such as a purely JavaScript application or an iPhone
application).

▪ Resource Owner Password Credential: Only used for trusted Clients, such as Clients
controlled by the Resource Owner.

▪ Client Credentials: Used with Application's API access.

For the purposes of this chapter we will only discuss the Authorization Code and Implicit
grant types, as they are by far the most common you will encounter implementing OAuth in
a typical web application.

Authorization Code Grants
Let's start with the most common OAuth implementation using an Authorization Code
grant type. At a high level, this flow can be described as shown in Figure 30.2 (excluding
subsequent requests actually using the provided access token).

Figure 30.2.

In an authorization code workflow, used in server-side applications (such as those written
in PHP), the Client redirects the user to the Authorization Server of a third party that the
client would like access to, providing its client ID. The Authorization Server receives the
request and presents the Owner with an authorization form outlining the resources being
requested by the client and requesting they approve the authorization grant. If the Owner is
not yet authenticated with the Authorization Server separately (e.g., not logged into
Twitter), the Owner must do this first before being presented with this form. Once the
Owner has have approved the grant, the Authorization Server of the third party constructs
an Authorization Code and redirects the Owner back to the Client with that code.

Client

Web Browser
(Previously

Authenticated)

Authorization
Server

1

2

3

4

5

1. Client redirects User to Authorization Server for
Grant Authorization Request

2. User is Presented with the Authorization Grant
for approval

3. Authorization Server redirects user back to Client
and provides an authorization code

4. Client uses provided authorization code to make
a request to the authorization server for an

access token

5. Authorization Server confirms authorization token
and issues an access token for the resources

Chapter 30 Social Media Integration Sharing and Authentication

30-4

With the Authorization Code now in the possession of the server-side application, a second
HTTP request is made by that application back to the Authorization Server which includes
the application's client ID, client secret, and the Authorization Code received. After all of
these things have been verified by the Authorization Server, the application receives via
this request an Access Token which can be used to perform requests against the desired
resources and should be saved.

It is worth noting that the term Access Token can be a bit misleading. Generally speaking,
the data returned from an Authorization Server which constitutes an Access Token is in
reality a data structure that contains among other things two separate tokens. The first is the
actual Access Token and the second is a Refresh Token. Typically speaking, Access
Tokens do not work indefinitely but rather only are valid for a period of time before the
authorization process has to happen again. Since repeatedly asking the user for permission
to a resource would be cumbersome, the server-side application can transparently request a
new Access Token using the Refresh Token without further user input. The lifetime of an
Access Token can always been determined in these cases by examination of the expiration
value contained within the token result and, if necessary, refreshing the Access Token using
the Refresh Token.

Implicit Grants
Sometimes you would like to use OAuth in ways where a server-side backend is not
available (such as a mobile application or JavaScript application). In these cases there is a
separate workflow to grant authorization known as an Implicit Grant. Unlike the
Authorization Code grant, which authenticates the requesting application's credentials, an
Implicit grant relies solely on the URI of the application to verify identity. Implicit Grants
also do not support Refresh Tokens. The flow of an Implicit Grant is illustrated in Figure
30.3.

Figure 30.3.

Client

Web Browser
(Previously

Authenticated)

Authorization
Server

1
2

3
4

1. Client redirects User to Authorization Server for
Grant Authorization Request and access is granted.

2. Web Browser is redirected back to client application
with the Access Token provided in the URL

3. Upon the user being redirected back to the
application, the application extracts the Access Token

4. The Access Token is then stored with the Client
and can be used until expiration.

Chapter 30 Social Media Integration Sharing and Authentication

30-5

For the sake of simplicity we have not included every minor step in our Implicit Grant
workflow, while still maintaining an accurate representation of the steps. As with the
Authorization Code grant, the Implicit Grant workflow begins with the user being
redirected to the Authorization Server to grant the client authorization to the desired
resources. However, where in an Authorization Code grant this is followed by the
redirection of the user back to the client with an Authorization Code (requiring a second
request to get an Access Token), in an Implicit Grant an Access Token is immediately
returned. This Access Token can then be used by the client immediately. As previously
mentioned however, such Access Tokens cannot be automatically refreshed by the use of a
Refresh Token and must be re-authorized by the user upon every expiration.

In the development of web applications, and specifically when dealing with integrations
with social media, Authorization Code and Implicit Grants are the two primary mechanisms
available in the OAuth 2.0 specification you will work with. There are other workflows as
well however they are out of scope for this chapter. In the next section, we will begin to put
our knowledge of OAuth to use by implementing a simple Instagram web client.

Building an Instagram Web Client
The first Social Media integration we will explore is Instagram. Instagram implements an
OAuth 2.0 authentication mechanism and we will be using an Authorization Code grant to
allow users to use our simple Instagram feed browser. As is the case with any OAuth 2.0
implementation our application must first be registered with the party controlling the
resources we want to access so we will also start there.

To get started integrating Instagram we must first create a developer account and register
our new application. This can be done by going to http://instagram.com/developer and
clicking on Manage Clients. Once in the Manage Client interface, a new client may be
created by clicking Register New Client and filling out the brief form describing your
application. From a technical perspective the most important portion of this form will be the
list of valid redirect URIs, so special care should be taken. These URIs are the valid web
addresses your client can request Instagram to redirect back to providing the Authorization
Code described in the previous section. Typically in a web application there will only be
one valid redirect URI per environment, however having one redirect URI for a production
system and one for a development or staging system is not uncommon.

Once you have registered your client with Instagram you will be provided the client ID and
client Secret values you will need to perform a successful Authorization Code grant. Hold
on to these values as they will be foundational to building our application.

For our Instagram application we will have five separate PHP scripts. The first of these
scripts will be a simple configuration file containing the necessary values we'll need to
implement our OAuth client. Then we will have two scripts which will actually implement
our OAuth client and two more scripts to provide the functionality of the Instagram client
we are building. To facilitate the ability to perform various HTTP requests easily we will
also be using the Guzzle HTTP Client package available via Composer and the Bootstrap
CSS framework for easy UI creation.

Chapter 30 Social Media Integration Sharing and Authentication

30-6

Since it is a requirement for every other script we will construct, let's start with the simple
PHP script to store the settings for our application and call it settings.php:
<?php

return [

 'client_id' => 'xxx',

 'client_secret' => 'xxx',

 'redirect_uri' => 'http://' . $_SERVER['HTTP_HOST'] . '/complete-
oauth.php',

 'scopes' => [

 'likes',

 'basic',

 'public_content'

]

];

This script contains all the values we will need to perform a successful OAuth authentication
request against the Instagram servers. It is designed to be included by another PHP script
using the include_once directive. It includes the Client ID and Client Secret values taken
from the client we registered on http://instagram.com/developer, a redirect URI that will
calculate based on the HTTP hostname which will be used to complete the OAuth procedure,
and an array of scope values.

The scope key of our settings is an important array, as it defines what things we are asking
the user to access of theirs when we perform our OAuth authentication. Fundamentally these
can be thought of as unique string constants specific to the platform you are authenticating
against. Each constant represents a different piece of functionality, data, or other resource
you are requesting the user give you authorization to use in your application. Instagram
provides a number of these scope values, all of which are documented in the Instagram API
documentation. Please see https://www.instagram.com/developer/authorization/ for complete
documentation of available scopes that a client may ask authorization to use. In our case, we
are asking for the likes, basic, and public_content scopes, which will give us the
ability to access basic account information, the ability to access any public profile
information or media available to the user, and the ability to like/unlike content on the user's
behalf.

The OAuth Login Page
The first step in our Instagram client is to present the user with a page to allow them to login
via OAuth, granting us access to their Instagram account. To do this, we must construct a
URL and attach it to a link on our page so that when it is clicked by the user it takes them to
the appropriate page on the Instagram Authorization Server to grant us access to the
resources we desire. Referring to the Instagram API documentation
(https://www.instagram.com/developer/authentication/), we want to direct the user to
https://api.instagram.com/oauth/authorize/ and pass the necessary details of the authorization

Chapter 30 Social Media Integration Sharing and Authentication

30-7

code request as GET parameters. Our login page and entrance point into our application
therefore is as follows (named index.php):
<?php

require_once __DIR__ . '/../vendor/autoload.php';

$settings = include_once 'settings.php';

$authParams = [

 'client_id' => $settings['client_id'],

 'client_secret' => $settings['client_secret'],

 'response_type' => 'code',

 'redirect_uri' => $settings['redirect_uri'],

 'scope' => implode(' ', $settings['scopes'])

];

$loginUrl = 'https://api.instagram.com/oauth/authorize?' .
http_build_query($authParams);

?>

<html>

 <head>

 <title>PMWD - Chapter 30 - Instagram Demo</title>

 <link rel="stylesheet"
href="//maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.min.css"
integrity="sha384-
1q8mTJOASx8j1Au+a5WDVnPi2lkFfwwEAa8hDDdjZlpLegxhjVME1fgjWPGmkzs7"
crossorigin="anonymous">

 <link rel="stylesheet"
href="//maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap-theme.min.css"
integrity="sha384-
fLW2N01lMqjakBkx3l/M9EahuwpSfeNvV63J5ezn3uZzapT0u7EYsXMjQV+0En5r"
crossorigin="anonymous">

 <script
src="//maxcdn.bootstrapcdn.com/bootstrap/3.3.6/js/bootstrap.min.js"
integrity="sha384-
0mSbJDEHialfmuBBQP6A4Qrprq5OVfW37PRR3j5ELqxss1yVqOtnepnHVP9aJ7xS"
crossorigin="anonymous"></script>

 </head>

 <body>

 <div class="container">

 <h1>PMWD - Chapter 30 (Instagram Demo)</h1>

 <div class="row">

 <div class="col-md-4 col-md-offset-4">

 <div class="panel panel-default">

Chapter 30 Social Media Integration Sharing and Authentication

30-8

 <div class="panel-heading">

 <h3 class="panel-title">Login with Instagram</h3>

 </div>

 <div class="panel-body">

 <a href="<?=$loginUrl?>" class="btn btn-block btn-
primary">Login with Instagram

 </div>

 </div>

 </div>

 </div>

 </div>

 </body>

</html>

Ignoring the HTML used to actually render the login form, we start our PHP script by
including autoload.php. This include statement is used to include the autoload.php
script generated by Composer and provides our application access to in this case the Guzzle
HTTP client. While not absolutely necessary for this specific page, for the sake of simplicity
all scripts in this example will include it.

Next, we load our settings array from the settings.php script described earlier and assign
it to the $settings variable using an include_once statement. Finally, we construct an
array of key/value pairs representing the various GET parameters we need to pass along to
Instagram when the user clicks Login and then append them as GET parameters to the
Instagram Authorization URL using the http_build_query() PHP function. This useful
function constructs the correct HTTP query string from an associative array that we can
simply append to the Instagram Authorization URL.

Once we have built the authorization URL we need to start the OAuth authentication on
Instagram's servers, we simply attach that URL to a Login with Instagram button that will
begin the authentication process when clicked.

The next step in the OAuth process is handled by Instagram itself, which will first ask the
user to log into their Instagram account then request authorization from them based on the
scope(s) we requested access to in our initial authorization URL GET parameters. Assuming
the user authorizes the request, Instagram will return the user to the specified redirect URI
with a GET parameter code. This parameter is our Authorization Code needed to obtain an
Access Token.

Completing The OAuth Authorization Grant
The next time we see the user after they click our Login button described above will be in the
complete-oauth.php script, which is the script we have instructed Instagram to redirect
the user back to after they have authorized our application's request. When the user returns
Instagram will also have provided HTTP GET parameter code, used to retrieve the Access
Token from Instagram as shown:
<?php

Chapter 30 Social Media Integration Sharing and Authentication

30-9

use GuzzleHttp\Client;

use GuzzleHttp\Exception\ClientException;

require_once __DIR__ . '/../vendor/autoload.php';

$settings = include_once 'settings.php';

if(!isset($_GET['code'])) {

 header("Location: index.php");

 exit;

}

$client = new Client();

try {

 $response = $client->post('https://api.instagram.com/oauth/access_token',
[

 'form_params' => [

 'client_id' => $settings['client_id'],

 'client_secret' => $settings['client_secret'],

 'grant_type' => 'authorization_code',

 'redirect_uri' => $settings['redirect_uri'],

 'code' => $_GET['code']

]

]);

} catch(ClientException $e) {

 if($e->getCode() == 400) {

 $errorResponse = json_decode($e->getResponse()->getBody(), true);

 die("Authentication Error: {$errorResponse['error_message']}");

 }

 throw $e;

}

$result = json_decode($response->getBody(), true);

$_SESSION['access_token'] = $result;

header("Location: feed.php");

exit;

After the previously explained setting up of our $settings array and including our
Composer autoloader, the first thing we do is make sure that we have been provided the code

Chapter 30 Social Media Integration Sharing and Authentication

30-10

HTTP GET parameter as expected. Assuming we have, we then create a Guzzle HTTP
Client instance and use it to perform a HTTP POST request back to the Instagram
Authorization Server. During this request we transmit all of the necessary data for our OAuth
request using the form_params option key. This includes our client ID and secret, the grant
type, our redirection URI and finally the Authorization Code we were just given as part of
this request.

Once the request occurs Instagram will authenticate all of these passed pieces of data to
verify the authorization request and return an Access Token as a response. In the event the
authorization fails Instagram will instead return a HTTP 400 error which translates into an
exception thrown by our HTTP client. Thus, we catch this specific exception and display the
error message for diagnostic purposes. Upon success of the request, we will be returned a
JSON document containing an Access Token, Refresh Token, and other relevant metadata
such as the expiration time for the Access Token. In a typical web application, this result
would be stored in some sort of persistent storage associated with the user (i.e. database), but
for our purposes we simply store it in the session for the user. Now that we have been issued
valid credentials to interact with Instagram on behalf of the user, we can now redirect them to
the entry point for our actual application and display a feed of content from their Instagram
account. This is done in the feed.php script, which we will introduce next.

Displaying an Instagram Feed
The feed.php script is the entry point to the actual functionality provided by our example
Instagram application. It assumes that the user has already granted us authorization to their
account in the steps previously discussed. Being an example, our Instagram application
accomplishes the following basic tasks:

▪ Load the most recent media available in the user's public feed, unless provided a tag
to search against.

▪ Allow the user to like a given post.

As this script is a little more complicated than those previously discussed we will break it
up into two parts. The first part is the logic we execute before we render the interface, and
the second will be the logic needed to properly render our interface.

Let's take a look at the first part of our feed.php script now:
<?php

require_once __DIR__ . '/../vendor/autoload.php';

use GuzzleHttp\Client;

if(!isset($_SESSION['access_token']) || empty($_SESSION['access_token'])) {

 header("Location: index.php");

 exit;

Chapter 30 Social Media Integration Sharing and Authentication

30-11

}

$requestUri = "https://api.instagram.com/v1/users/self/media/recent";

$recentPhotos = [];

$tag = '';

if(isset($_GET['tagQuery']) && !empty($_GET['tagQuery'])) {

 $tag = urlencode($_GET['tagQuery']);

 $requestUri = "https://api.instagram.com/v1/tags/$tag/media/recent";

}

$client = new Client();

$response = $client->get($requestUri, [

 'query' => [

 'access_token' => $_SESSION['access_token']['access_token'],

 'count' => 50

]

]);

$results = json_decode($response->getBody(), true);

if(is_array($results)) {

 $recentPhotos = array_chunk($results['data'], 4);

}

?>

We start our script by performing a few sanity checks to make sure we have an Access
Token available and redirecting the user back to the login page to get one if we don't. Next,
we initialize a few variables. The $requestUri variable (which is the URI we will
perform our request to get media from the Instagram API), the $recentPhotos variable
(which will store the media from our request), and the $tag variable which will store the
tag we are retrieving media for.

By default we want to return the most recent media available, unless a specific tag was
specified. Thus, we initialize our $requestUri for that endpoint and then check to see if
the tagQuery HTTP GET parameter was provided. If it wasn't we will perform the request
for the most recent media and if it was we will perform a request against a different URI in
the Instagram API to return only that media which has the specified tag. This works
because for our purposes in either case the result from the Instagram API is similar enough
we can build a single interface to render the result.

Chapter 30 Social Media Integration Sharing and Authentication

30-12

Once we have determined our API endpoint we perform a HTTP GET request against it and
pass along the number of results to return (the count parameter) and our OAuth Access
Token. Note when we received the Access Token from Instagram it was in the form of a
JSON document containing not only the Access Token but also other values such as a
Refresh Token. We only want to provide the actual Access Token itself back to Instagram
to perform the request.

The result of the request will be a JSON document containing a collection of media posts
that match the criteria of our request so we simply convert that document into a PHP array
using json_decode(). We then break that array into chunks of 4, which will be helpful
when rendering the media in a moment. Ultimately we have our $recentPhotos array
which will containing a list of sub-arrays, each containing up to four actual media posts to
render.

Next, we will take this array and render it using the Bootstrap CSS framework in an
appealing way. Here's the second half of our feed.php script which does so:
<html>

 <head>

 <title>PMWD - Chapter 30 - Instagram Demo</title>

 <link rel="stylesheet"
href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.min.css"
integrity="sha384-
1q8mTJOASx8j1Au+a5WDVnPi2lkFfwwEAa8hDDdjZlpLegxhjVME1fgjWPGmkzs7"
crossorigin="anonymous">

 <link rel="stylesheet"
href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap-
theme.min.css" integrity="sha384-
fLW2N01lMqjakBkx3l/M9EahuwpSfeNvV63J5ezn3uZzapT0u7EYsXMjQV+0En5r"
crossorigin="anonymous">

 <script
src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/js/bootstrap.min.js"
integrity="sha384-
0mSbJDEHialfmuBBQP6A4Qrprq5OVfW37PRR3j5ELqxss1yVqOtnepnHVP9aJ7xS"
crossorigin="anonymous"></script>

 <script src="//code.jquery.com/jquery-1.12.0.min.js"></script>

 <script>

 $(document).ready(function() {

 $('.like-button').on('click', function(e) {

 e.preventDefault();

 var media_id =
$(e.target).data('media-id');

 $.get('like.php?media_id=' + media_id,
function(data) {

 if(data.success) {

Chapter 30 Social Media Integration Sharing and Authentication

30-13

 $(e.target).remove();

 }

 });

 });

 });

 </script>

 </head>

 <body>

 <div class="container">

 <h1>Instagram Recent Photos</h1>

 <div class="row">

 <div class="col-md-12">

 <form class="form-horizontal" method="GET"
action="feed.php">

 <fieldset class="form-group">

 <div class="col-xs-9 input-group">

 <input type="text" class="form-control"
id="tagQuery" name="tagQuery" placeholder="Search for a tag...."
value="<?=$tag?>"/>

 <button type="submit" class="btn btn-
primary"><i class="glyphicon glyphicon-search"></i> Search</button>

 </div>

 </fieldset>

 </form>

 </div>

 </div>

 <div class="row">

 <?php foreach($recentPhotos as $photoRow): ?>

 <div class="row">

 <?php foreach($photoRow as $photo): ?>

 <div class="col-md-3">

 <div class="card">

 <div class="card-block">

 <h4 class="card-
title"><?=substr($photo['caption']['text'], 0, 30)?></h4>

 <h6 class="card-subtitle text-
muted"><?=substr($photo['caption']['text'], 30, 30)?></h6>

 </div>

 <img class="card-img-top"
src="<?=$photo['images']['thumbnail']['url']?>"
alt="<?=$photo['caption']['text']?>">

 <div class="card-block">

Chapter 30 Social Media Integration Sharing and Authentication

30-14

 <?php foreach($photo['tags'] as $tag): ?>

 <a href="feed.php?tagQuery=<?=$tag?>"
class="card-link">#<?=$tag?>

 <?php endforeach?>

 </div>

 <div class="card-footer text-right">

 <?php if(!$photo['user_has_liked']): ?>

 <a data-media-id="<?=$photo['id']?>"
href="#" class="btn btn-xs btn-primary like-button"><i class="glyphicon
glyphicon-thumbs-up"></i> Like

 <?php endif; ?>

 </div>

 </div>

 </div>

 <?php endforeach; ?>

 </div>

 <?php endforeach; ?>

 </div>

 </div>

 </body>

</html>

The output of the feed.php script is the heart of our example application, which renders
either a specific tag or the most recent photos from the given user's Instagram feed. This
includes a search bar at the top of the page to search for a tag, and then using Bootstrap's
grid UI framework, each photo result. In addition to rendering the photo itself and its
caption we also render a Like button for any photo rendered the user has not liked yet. This
like button is powered by a jQuery script that, when clicked, makes an AJAX call back to
our application (specifically the like.php script we will discuss next) to flag the photo as
"liked" using the Instagram API. If the user has previously liked the photo in question we
simply do not display the Like button.

Liking Photos on Instagram
To implement the ability to like a photo on Instagram, as we just discussed in the
proceeding section the example application uses an AJAX request to the like.php script
of our application. This script is as shown:
<?php

require_once __DIR__ . '/../vendor/autoload.php';

use GuzzleHttp\Client;

header("Content-Type: application/json");

Chapter 30 Social Media Integration Sharing and Authentication

30-15

if(!isset($_SESSION['access_token']) || empty($_SESSION['access_token'])) {

 header("Location: index.php");

 exit;

}

if(!isset($_GET['media_id']) || empty($_GET['media_id'])) {

 echo json_encode([

 'success' => false

]);

 return;

}

$media_id = $_GET['media_id'];

$requestUri = "https://api.instagram.com/v1/media/{$media_id}/likes";

$client = new Client();

$response = $client->post($requestUri, [

 'form_params' => [

 'access_token' => $_SESSION['access_token']['access_token']

]

]);

$results = json_decode($response->getBody(), true);

echo json_encode([

 'success' => true

]);

At this point, the fundamentals which occur at the top of each script in our example
application should be straightforward. Unlike the other scripts in our application, however,
this one is designed to be called via AJAX and thus its output is JSON instead of HTML. In
this case, we expect to be provided an Instagram media ID (the unique identifier Instagram
assigns to every post) as an HTTP GET parameter and then use Instagram's API to like the
photo on behalf of the user (via the Access Token for them). Upon success, we indicate it to
the calling AJAX script with a simple return value in JSON format.

Conclusion
This concludes our exploration of OAuth through the Instagram API. However by no
means have we provided a comprehensive catalog of all of the API calls available. We

Chapter 30 Social Media Integration Sharing and Authentication

30-16

leave it as an exercise for the reader to explore all of the APIs, using the techniques and
tools we've provided to authenticate your application on behalf of the user and perform
HTTP API requests. A complete documentation of the Instagram API is available in the
Instagram Developer portal, http://www.instagram.com/developer/, which is also where
you register your application for OAuth access.

While great lengths were taken to explain each step in the OAuth process, it is worth
pointing out that in a professional application such efforts are not necessary. Social Media
platforms such as Facebook and Google, for example, both provide PHP SDKs for
interacting with their various web services that simplify the authentication process
considerably. For those platforms that do not provide a specific SDK for PHP, such as
Twitter, oftentimes there still have been written well-maintained open-source SDKs such as
TwitterOAuth (http://twitteroauth.com/) that accomplish the same task.

While it is certainly important to understand how OAuth and social media API integrations
work, it is strongly recommended that once you have mastered them you rely on the wide
variety of pre-existing tools rather than rebuild them from scratch.

