
31	
Building a Shopping Cart

In this chapter, you learn how to build a basic shopping cart. You add this on top of the Book-O-Rama
database implemented in Part II, “Using MySQL.” You also explore another option: setting up and using an
existing open source PHP shopping cart.

In case you have not heard it before, the term shopping cart (sometimes also called a shopping basket) is used
to describe a specific online shopping mechanism. As you browse an online catalog, you can add items to your
shopping cart. After you’ve finished browsing, you check out of the online store—that is, purchase the items in
your cart.

To implement the shopping cart for this project, you need to implement the following functionality:

▪ A database of the products you want to sell online

▪ An online catalog of products, listed by category

▪ A shopping cart to track the items a user wants to buy

▪ A checkout script that processes payment and shipping details

▪ An administration interface

Solution Components
You probably remember the Book-O-Rama database developed in Part II. In this project, you get Book-O-
Rama’s online store up and going. The solution components fall under these general goals:

▪ You need to find a way of connecting the database to users’ browsers. Users should be able to browse
items by category.

▪ Users should also be able to select items from the catalog for later purchase. You need to be able to track
which items they have selected.

▪ After users have finished shopping, you need to be able to total their order, take their delivery details,
and process their payment.

▪ You should also build an administration interface to Book-O-Rama’s site so that the administrator can
add and edit books and categories on the site.

Now that you know the idea behind the project, you can begin designing the solution and its components.

Building an Online Catalog
You already have a database for the Book-O-Rama catalog. However, it probably needs some alterations and
additions for this application. One of these is to add categories of books, as stated in the requirements.

Chapter	31	Building	a	Shopping	Cart	

31-2	
	

You also need to add some information to the existing database about shipping addresses, payment details, and
so on. You already know how to build an interface to a MySQL database using PHP, so this part of the
solution should be pretty easy.

You should also use transactions while completing customers’ orders. To do this, you need to convert your
Book-O-Rama tables to use the InnoDB storage engine. This process is also reasonably straightforward.

Tracking Users’ Purchases While They Shop
There are two basic ways you can track users’ purchases while they shop. One is to put their selections into the
database, and the other is to use a session variable.

Using a session variable to track selections from page to page is easier to write because it does not require you
to constantly query the database for this information. By using this approach, you also avoid the situation in
which you end up with a lot of junk data in the database from users who are just browsing and change their
minds.

You need, therefore, to design a session variable or set of variables to store a user’s selections. When a user
finishes shopping and pays for her purchases, you will put this information in the database as a record of the
transaction.

You can also use this data to give a summary of the current state of the cart in one corner of the page so that a
user knows at any given time how much she is planning to spend.

Implementing a Payment System
In this project, you add the user’s order and take the delivery details but do not actually process payments.
Many, many payment systems are available, and the implementation for each one is different. For this project,
you write a dummy function that can be replaced with an interface to your chosen system.

Although there are several different payment gateways you can use, and many different interfaces to these
gateways, the functionality behind real-time credit card processing interfaces is generally similar. You need to
open a merchant account with a bank for the cards you want to accept—and typically your bank will have a list
of recommended providers for the payment system itself. Your payment system provider will specify what
parameters you need to pass to its system, and how. Many payment systems have sample code already
available for use with PHP, which you could easily use to replace the dummy function created in this chapter.

When in use, the payment system transmits your data to a bank and returns a success code or one of many
different types of error codes. In exchange for passing on your data, the payment gateway charges you a setup
or annual fee, as well as a fee based on the number or value of your transactions. Some providers even charge
for declined transactions.

At the minimum, your payment system needs information from the customer (such as a credit card number),
identifying information from you (to specify which merchant account is to be credited), and the total amount of
the transaction.

You can work out the total of an order from a user’s shopping cart session variable. You then record the final
order details in the database and get rid of the session variable at that time.

Building an Administration Interface
In addition to the payment system and so on, you also need to build an administration interface that lets you
add, delete, and edit books and categories from the database.

One common edit that you might make is to alter the price of an item (for example, for a special offer or sale).
This means that when you store a customer’s order, you should also store the price she paid for an item. It
would make for an accounting nightmare if the only records you had were the items each customer ordered and
the current price of each one. This also means that if the customer has to return or exchange the item, you will
give her the right amount of credit.

Chapter	31	Building	a	Shopping	Cart	
	

31-3	
	

You are not going to build a fulfillment and order tracking interface for this example. However, you can add
one onto this base system to suit your needs.

Solution Overview
Let’s put all the pieces together now. There are two basic views of the system: the user view and the
administrator view. After considering the functionality required, we came up with two system flow designs
you can use, one for each view. They are shown in Figures 31.1 and 31.2, respectively.
	

Figure 31.1	 The	user	view	of	the	Book-O-Rama	system	lets	users	browse	books	by	category,	view	book	details,	add	books	
to	their	cart,	and	purchase	them.	

Figure 31.2	 The	administrator	view	of	the	Book-O-Rama	system	allows	insertion,	editing,	and	deletion	of	books	and	
categories.	

Chapter	31	Building	a	Shopping	Cart	

31-4	
	

Figure 31.1 shows the main links between scripts in the user part of the site. A customer comes first to the
main page, which lists all the categories of books in the site. From there, she can go to a particular category of
books, and from there to an individual book’s details.

You give the user a link to add a particular book to her cart. From the cart, she can check out of the online
store.

Figure 31.2 shows the administration interface, which has more scripts but not much new code. These scripts
let an administrator log in and insert books and categories.

The easiest way to implement editing and deletion of books and categories is to show the administrator a
slightly different version of the user interface to the site. The administrator can still browse categories and
books, but instead of having access to the shopping cart, he can go to a particular book or category and edit or
delete that book or category. By making the same scripts suit both normal and administrator users, you can
save yourself time and effort.

The three main code modules for this application are as follows:

▪ Catalog

▪ Shopping cart and order processing (We bundled them together because they are strongly related.)

▪ Administration

As is often the case with a project such as this, you will need to build and use a set of function libraries. For
this project, you use a function API similar to other projects in this text. Try to confine the parts of the code
that output HTML to a single library to support the principle of separating logic and content and, more
importantly, to make the code easier to read and maintain.

You also need to make some minor changes to the Book-O-Rama database for this project. We renamed the
database book_sc (Shopping Cart) to distinguish the shopping cart database from the one built in Part II.

A summary of the files in the application is shown in Table 31.1.

Table 31.1 Files in the Shopping Cart Application

Name Module Description

index.php Catalog	 Main	front	page	of	site	for	users.	Shows	the	users	a	list	of	
categories	in	the	system.	

show_cat.php Catalog	 Page	that	shows	the	users	all	the	books	in	a	particular	
category.	

show_book.php Catalog	 Page	that	shows	the	users	details	of	a	particular	book.	

show_cart.php Shopping	cart	 Page	that	shows	the	users	the	contents	of	their	shopping	
carts.	Also	used	to	add	items	to	the	cart.	

checkout.php Shopping	cart	 Page	that	presents	the	users	with	complete	order	details.	Gets	
shipping	details.	

purchase.php Shopping	cart	 Page	that	gets	payment	details	from	users.	

process.php Shopping	cart	 Script	that	processes	payment	details	and	adds	the	order	to	
the	database.	

login.php Administration	 Script	that	allows	the	administrator	to	log	in	to	make	changes.	

logout.php Administration	 Script	that	logs	out	the	admin	user.	

admin.php Administration	 Main	administration	menu.	

change_password_form.php Administration	 Form	to	let	administrators	change	their	log	passwords.	

change_password.php Administration	 Script	that	changes	the	administrator	password.	

insert_category_form.php Administration	 Form	to	let	administrators	add	a	new	category	to	the	

Chapter	31	Building	a	Shopping	Cart	
	

31-5	
	

database.	

insert_category.php Administration	 Script	that	inserts	a	new	category	into	the	database.	

insert_book_form.php Administration	 Form	to	let	administrators	add	a	new	book	to	the	system.	

insert_book.php Administration	 Script	that	inserts	a	new	book	into	the	database.	

edit_category_form.php Administration	 Form	to	let	administrators	edit	a	category.	

edit_category.php Administration	 Script	that	updates	a	category	in	the	database.	

edit_book_form.php Administration	 Form	to	let	administrators	edit	a	book’s	details.	

edit_book.php Administration	 Script	that	updates	a	book	in	the	database.	

delete_category.php Administration	 Script	that	deletes	a	category	from	the	database.	

delete_book.php Administration	 Script	that	deletes	a	book	from	the	database.	

book_sc_fns.php Functions	 Collection	of	include	files	for	this	application.	

admin_fns.php Functions	 Collection	of	functions	used	by	administrative	scripts.	

book_fns.php Functions	 Collection	of	functions	for	storing	and	retrieving	book	data.	

order_fns.php Functions	 Collection	of	functions	for	storing	and	retrieving	order	data.	

output_fns.php Functions	 Collection	of	functions	for	outputting	HTML.	

data_valid_fns.php Functions	 Collection	of	functions	for	validating	input	data.	

db_fns.php Functions	 Collection	of	functions	for	connecting	to	the	book_sc	
database.

user_auth_fns.php Functions	 Collection	of	functions	for	authenticating	administrative	users.	

book_sc.sql SQL	 SQL	to	set	up	the	book_sc	database.
populate.sql SQL SQL to insert some sample data into the book_sc

database.

Now, let’s look at the implementation of each of the modules.
	 	

Note
This	application	contains	a	lot	of	code.	Much	of	it	implements	functionality	you	have	looked	at	already	throughout	the	
book,	such	as	storing	data	to	and	retrieving	it	from	the	database,	and	authenticating	the	administrative	user.	We	look	
briefly	at	this	code	but	spend	most	of	our	time	on	the	shopping	cart	functions.	

Implementing the Database
As we mentioned earlier, we made some minor modifications to the Book-O-Rama database presented in Part
II. The SQL to create the book_sc database is shown in Listing 31.1.

Listing 31.1	 book_sc.sql—SQL	to	Create	the	book_sc	Database	

create database book_sc;

use book_sc;

create table customers
(
 customerid int unsigned not null auto_increment primary key,
 name char(60) not null,
 address char(80) not null,
 city char(30) not null,
 state char(20),

Chapter	31	Building	a	Shopping	Cart	

31-6	
	

 zip char(10),
 country char(20) not null
) type=InnoDB;

create table orders
(
 orderid int unsigned not null auto_increment primary key,
 customerid int unsigned not null references customers(customerid),
 amount float(6,2),
 date date not null,
 order_status char(10),
 ship_name char(60) not null,
 ship_address char(80) not null,
 ship_city char(30) not null,
 ship_state char(20),
 ship_zip char(10),
 ship_country char(20) not null
) type=InnoDB;

create table books
(
 isbn char(13) not null primary key,
 author char(100),
 title char(100),
 catid int unsigned,
 price float(4,2) not null,
 description varchar(255)
) type=InnoDB;

create table categories
(
 catid int unsigned not null auto_increment primary key,
 catname char(60) not null
) type=InnoDB;

create table order_items
(
 orderid int unsigned not null references orders(orderid),
 isbn char(13) not null references books(isbn),
 item_price float(4,2) not null,
 quantity tinyint unsigned not null,
 primary key (orderid, isbn)
) type=InnoDB;

create table admin
 (
 username char(16) not null primary key,
 password char(40) not null
);

grant select, insert, update, delete
on book_sc.*
to book_sc@localhost identified by 'password';

Although nothing was wrong with the original Book-O-Rama interface, you must address a few other
requirements now that you are going to make it available online.

Chapter	31	Building	a	Shopping	Cart	
	

31-7	
	

The changes made to the original database are as follows:

▪ The addition of more address fields for customers. Having additional fields is more important now that
you are building a more realistic application.

▪ The addition of a shipping address to an order. A customer’s contact address might not be the same as
the shipping address, particularly if she is using the site to buy a gift.

▪ The addition of a categories table and a catid to books table. Sorting books into categories makes
the site easier to browse.

▪ The addition of item_price to the order_items table to recognize the fact that an item’s price might
change. You want to know how much the item cost when the customer ordered it.

▪ The addition of an admin table to store administrator login and password details.

▪ The removal of the reviews table. You could add reviews as an extension to this project. Instead, each
book has a description field containing a brief blurb about the book.

▪ The change in storage engines to InnoDB. You do this so that you can use foreign keys and also so you
can use transactions when entering customer order information.

To set up this database on your system, run the book_sc.sql script through MySQL as the root user, as
follows:
mysql -u root -p < book_sc.sql

(You need to supply your root password.)

Beforehand, you should change the password for the book_sc user to something better than 'password'. Note
that if you change the password in book_sc.sql, you will also need to change it in db_fns.php. (You’ll see
where shortly.)

We also included a file of sample data called populate.sql. You can put the sample data into the database by
running it through MySQL in this same way.

Implementing the Online Catalog
Three catalog scripts are used in this application: the main page, category page, and book details page.

The front page of the site is produced by the script called index.php. The output of this script is shown in
Figure 31.3.

Chapter	31	Building	a	Shopping	Cart	

31-8	
	

Figure 31.3	 The	front	page	of	the	site	lists	the	categories	of	books	available	for	
purchase.	

Notice that, in addition to the list of categories on the site, it has a link to the shopping cart in the top-right
corner of the screen and some summary information about what’s in the cart. These elements appear on every
page while a user browses and shops.

If a user clicks one of the categories, she’ll be taken to the category page, produced by the script
show_cat.php. The category page for the Internet books section is shown in Figure 31.4.

Figure 31.4	 Each	book	in	the	category	is	listed	with	a	photo.	

Chapter	31	Building	a	Shopping	Cart	
	

31-9	
	

All the books in the Internet category are listed as links. If a user clicks one of these links, she will be taken to
the book details page. The book details page for one book is shown in Figure 31.5.

Figure 31.5	 Each	book	has	a	details	page	that	shows	more	information,	including	a	
long	description.	

On this page, as well as the View Cart link, an Add to Cart link enables the user to select an item for purchase.
We return to this feature when we look at how to build the shopping cart later.

Let’s look at each of these three scripts.

Listing Categories
The first script used in this project, index.php, lists all the categories in the database. It is shown in Listing
31.2.

Listing 31.2	 index.php—Script	to	Produce	the	Front	Page	of	the	Site	

<?php
 include_once 'book_sc_fns.php';
 // The shopping cart needs sessions, so start one
 session_start();
 do_html_header("Welcome to Book-O-Rama");

 echo "<p>Please choose a category:</p>";

 // get categories out of database
 $cat_array = get_categories();

 // display as links to cat pages
 display_categories($cat_array);

 // if logged in as admin, show add, delete, edit cat links
 if(isset($_SESSION['admin_user'])) {
 display_button("admin.php", "admin-menu", "Admin Menu");
 }
 do_html_footer();

Chapter	31	Building	a	Shopping	Cart	

31-10	
	

?>

This script begins by including book_sc_fns.php, the file that includes all the function libraries for this
application.

After that, you must begin a session. This is required for the shopping cart functionality to work. Every page in
the site will use the session.

The index.php script also contains some calls to HTML output functions such as do_html_header() and
do_html_footer() (both contained in output_fns.php). It also contains some code that checks whether the
user is logged in as an administrator and gives her some different navigation options if she is; we return to this
feature in the section on the administration functions.

The most important part of this script is
// get categories out of database

$cat_array = get_categories();

// display as links to cat pages

display_categories($cat_array);

The functions get_categories() and display_categories() are in the function libraries book_fns.php and
output_fns.php, respectively. The function get_categories() returns an array of the categories in the
system, which you then pass to display_categories(). Let’s look at the code for get_categories(), shown
in Listing 31.3.

Listing 31.3	 get_categories()	Function	from	book_fns.php—Function	That	Retrieves	a	Category	List	
from	the	Database	

function get_categories() {
 // query database for a list of categories
 $conn = db_connect();
 $query = "select catid, catname from categories";
 $result = @$conn->query($query);
 if (!$result) {
 return false;
 }
 $num_cats = @$result->num_rows;
 if ($num_cats == 0) {
 return false;
 }
 $result = db_result_to_array($result);
 return $result;
}

As you can see, the get_categories() function connects to the database and retrieves a list of all the category
IDs and names. We wrote and used a function called db_result_to_array(), located in db_fns.php. This
function is shown in Listing 31.4. It takes a MySQL result identifier and returns a numerically indexed array of
rows, where each row is an associative array.

Listing 31.4	 db_result_to_array()	Function	from	db_fns.php—Function	That	Converts	a	MySQL	
Result	Identifier	into	an	Array	of	Results	

function db_result_to_array($result) {
 $res_array = array();

 for ($count=0; $row = $result->fetch_assoc(); $count++) {

Chapter	31	Building	a	Shopping	Cart	
	

31-11	
	

 $res_array[$count] = $row;
 }

 return $res_array;
}

In this case, you return this array back all the way to index.php, where you pass it to the
display_categories() function from output_fns.php. This function displays each category as a link to the
page containing the books in that category. The code for this function is shown in Listing 31.5.

Listing 31.5	 display_categories()	Function	from	output_fns.php—Function	That	Displays	an	Array	
of	Categories	as	a	List	of	Links	to	Those	Categories	

function display_categories($cat_array) {
 if (!is_array($cat_array)) {
 echo "<p>No categories currently available</p>";
 return;
 }
 echo "";
 foreach ($cat_array as $row) {
 $url = "show_cat.php?catid=".urlencode($row['catid']);
 $title = $row['catname'];
 echo "";
 do_html_url($url, $title);
 echo "";
 }
 echo "";
 echo "<hr />";
}

The display_categories() function converts each category from the database into a link. Each link goes to
the next script—show_cat.php—but each has a different parameter, the category ID or catid. (This unique
number, generated by MySQL, is used to identify the category.)

This parameter to the next script determines which category you end up looking at.

Listing Books in a Category
The process for listing books in a category is similar. The script that does this, called show_cat.php, is shown
in Listing 31.6.

Listing 31.6	 show_cat.php—Script	That	Shows	the	Books	in	a	Particular	Category	

<?php
 include ('book_sc_fns.php');
 // The shopping cart needs sessions, so start one
 session_start();

 $catid = $_GET['catid'];
 $name = get_category_name($catid);

 do_html_header($name);

 // get the book info out from db
 $book_array = get_books($catid);

Chapter	31	Building	a	Shopping	Cart	

31-12	
	

 display_books($book_array);

 // if logged in as admin, show add, delete book links
 if(isset($_SESSION['admin_user'])) {
 display_button("index.php", "continue", "Continue Shopping");
 display_button("admin.php", "admin-menu", "Admin Menu");
 display_button("edit_category_form.php?catid=". urlencode($catid),
 "edit-category", "Edit Category");
 } else {
 display_button("index.php", "continue-shopping", "Continue Shopping");
 }

 do_html_footer();
?>

This script is similar in structure to the index page, except that you retrieve books instead of categories.

You start with session_start() as usual and then convert the category ID you have been passed into a
category name by using the get_category_name() function as follows:
$name = get_category_name($catid);

This function, shown in Listing 31.7, looks up the category name in the database.

Listing 31.7	 get_category_name()	Function	from	book_fns.php—Function	That	Converts	a	Category	ID	
to	a	Category	Name	

function get_category_name($catid) {
 // query database for the name for a category id
 $conn = db_connect();
 $query = "select catname from categories
 where catid = '".$conn->real_escape_string($catid)."'";
 $result = @$conn->query($query);
 if (!$result) {
 return false;
 }
 $num_cats = @$result->num_rows;
 if ($num_cats == 0) {
 return false;
 }
 $row = $result->fetch_object();
 return $row->catname;
}

After you have retrieved the category name, you can render an HTML header and proceed to retrieve and list
the books from the database that fall into your chosen category, as follows:
$book_array = get_books($catid);

display_books($book_array);

The functions get_books() and display_books() are extremely similar to the get_categories() and
display_categories() functions, so we do not go into them here. The only difference is that you retrieve
information from the books table rather than the categories table.

The display_books() function provides a link to each book in the category via the show_book.php script.
Again, each link is suffixed with a parameter. This time around, it’s the ISBN for the book in question.

Chapter	31	Building	a	Shopping	Cart	
	

31-13	
	

At the bottom of the show_cat.php script, there is some code to display additional functions if an
administrator is logged in. We look at these functions in the section on administrative functions.

Showing Book Details
The show_book.php script takes an ISBN as a parameter and retrieves and displays the details of that book.
The code for this script is shown in Listing 31.8.

Listing 31.8	 show_book.php—	Script	That	Shows	the	Details	of	a	Particular	Book	

<?php
 include ('book_sc_fns.php');
 // The shopping cart needs sessions, so start one
 session_start();

 $isbn = $_GET['isbn'];

 // get this book out of database
 $book = get_book_details($isbn);
 do_html_header($book['title']);
 display_book_details($book);

 // set url for "continue button"
 $target = "index.php";
 if($book['catid']) {
 $target = "show_cat.php?catid=". urlencode($book['catid']);
 }

 // if logged in as admin, show edit book links
 if(check_admin_user()) {
 display_button("edit_book_form.php?isbn=". urlencode($isbn), "edit-item", "Edit Item");
 display_button("admin.php", "admin-menu", "Admin Menu");
 display_button($target, "continue", "Continue");
 } else {
 display_button("show_cart.php?new=". urlencode($isbn), "add-to-cart",
 "Add ". htmlspecialchars($book['title']) ." To My Shopping Cart");
 display_button($target, "continue-shopping", "Continue Shopping");
 }

 do_html_footer();
?>

Again, with this script you do similar things as in the previous two pages. You begin by starting the session
and then use
$book = get_book_details($isbn);

to get the book information out of the database. Next, you use
display_book_details($book);

to output the data in HTML.

Note that display_book_details() looks for an image file for the book as images/{$book['isbn']}.jpg,
in which the name of the file is the book’s ISBN plus the .jpg extension. If this file does not exist in the images
subdirectory, no image will be displayed. The remainder of the show_book.php script sets up navigation. A
normal user has the choices Continue Shopping, which takes her back to the category page, and Add to Cart,
which adds the book to her shopping cart. If a user is logged in as an administrator, she will get some different
options, which we look at in the section on administration.

Chapter	31	Building	a	Shopping	Cart	

31-14	
	

We’ve completed the basics of the catalog system. Now let’s look at the code for the shopping cart
functionality.

Implementing the Shopping Cart
The shopping cart functionality all revolves around a session variable called cart. It is an associative array that
has ISBNs as keys and quantities as values. For example, if you add a single copy of this book to your
shopping cart, the array would contain
0672329166=> 1

That is, the array would contain one copy of the book with the ISBN 0672329166. When you add items to the
cart, they are added to the array. When you view the cart, you use the cart array to look up the full details of
the items in the database.

You also use two other session variables to control the display in the header that shows Total Items and Total
Price. These variables are called items and total_price, respectively.

Using the show_cart.php Script
Let’s examine how the shopping cart code is implemented by looking at the show_cart.php script. This script
displays the page you will visit if you click on any View Cart or Add to Cart links. If you call show_cart.php
without any parameters, you will get to see the contents of it. If you call it with an ISBN as a parameter, the
item with that ISBN will be added to the cart.

To understand fully how this script operates, look first at Figure 31.6.

Figure 31.6	 The	show_cart.php	script	with	no	parameters	just	shows	the	
contents	of	the	cart.	

In this case, we clicked the View Cart link when our cart was empty; that is, we had not yet selected any items
to purchase.

Figure 31.7 shows the cart a bit further down the track after we selected two books to buy. In this case, we got
to this page by clicking the Add to Cart link on the show_book.php page for this book, PHP and MySQL Web
Development. If you look closely at the URL bar, you will see that we called the script with a parameter this

Chapter	31	Building	a	Shopping	Cart	
	

31-15	
	

time. The parameter is called new and has the value 067232976X—that is, the ISBN for the book just added to
the cart.

From this page, you can see that you have two other options. The Save Changes button can be used to change
the quantity of items in the cart. To do this, the user can alter the quantities directly and click Save Changes.
This is actually a submit button that takes the user back to the show_cart.php script again to update the cart.

In addition, the user can click the Go to Checkout button when she is ready to leave. We come back to that
shortly.

Figure 31.7	 The	show_cart.php	script	with	the	new	parameter	adds	a	new	item	
to	the	cart.	

For now, let’s look at the code for the show_cart.php script. This code is shown in Listing 31.9.

Listing 31.9	 show_cart.php—	Script	That	Controls	the	Shopping	Cart	

<?php
 include ('book_sc_fns.php');
 // The shopping cart needs sessions, so start one
 session_start();

 @$new = $_GET['new'];

 if($new) {
 //new item selected
 if(!isset($_SESSION['cart'])) {
 $_SESSION['cart'] = array();
 $_SESSION['items'] = 0;
 $_SESSION['total_price'] ='0.00';
 }

 if(isset($_SESSION['cart'][$new])) {
 $_SESSION['cart'][$new]++;
 } else {
 $_SESSION['cart'][$new] = 1;
 }

Chapter	31	Building	a	Shopping	Cart	

31-16	
	

 $_SESSION['total_price'] = calculate_price($_SESSION['cart']);
 $_SESSION['items'] = calculate_items($_SESSION['cart']);
 }

 if(isset($_POST['save'])) {
 foreach ($_SESSION['cart'] as $isbn => $qty) {
 if($_POST[$isbn] == '0') {
 unset($_SESSION['cart'][$isbn]);
 } else {
 $_SESSION['cart'][$isbn] = $_POST[$isbn];
 }
 }

 $_SESSION['total_price'] = calculate_price($_SESSION['cart']);
 $_SESSION['items'] = calculate_items($_SESSION['cart']);
 }

 do_html_header("Your shopping cart");

 if(($_SESSION['cart']) && (array_count_values($_SESSION['cart']))) {
 display_cart($_SESSION['cart']);
 } else {
 echo "<p>There are no items in your cart</p><hr/>";
 }

 $target = "index.php";

 // if we have just added an item to the cart, continue shopping in that category
 if($new) {
 $details = get_book_details($new);
 if($details['catid']) {
 $target = "show_cat.php?catid=".urlencode($details['catid']);
 }
 }
 display_button($target, "continue-shopping", "Continue Shopping");

 // use this if SSL is set up
 // $path = $_SERVER['PHP_SELF'];
 // $server = $_SERVER['SERVER_NAME'];
 // $path = str_replace('show_cart.php', '', $path);
 // display_button("https://".$server.$path."checkout.php",
 // "go-to-checkout", "Go To Checkout");

 // if no SSL use below code
 display_button("checkout.php", "go-to-checkout", "Go To Checkout");

 do_html_footer();
?>

This script has three main parts: displaying the cart, adding items to the cart, and saving changes to the cart.
We cover these parts in the next three sections.

Viewing the Cart

Chapter	31	Building	a	Shopping	Cart	
	

31-17	
	

No matter which page you come from, you display the contents of the cart. In the base case, when a user has
just clicked View Cart, the only part of the code that will be executed follows:
if(($_SESSION['cart']) && (array_count_values($_SESSION['cart']))) {

 display_cart($_SESSION['cart']);

} else {

 echo "<p>There are no items in your cart</p><hr/>";

}

As you can see from this code, if you have a cart with some contents, you will call the display_cart()
function. If the cart is empty, you’ll give the user a message to that effect.

The display_cart() function just prints the contents of the cart as a readable HTML format, as you can see in
Figures 31.6 and 31.7. The code for this function can be found in output_fns.php, which is included here as
Listing 31.10. Although it is a display function, it is reasonably complex, so we chose to include it here.

Listing 31.10	 display_cart()	Function	from	output_fns.php—Function	That	Formats	and	Prints	the	
Contents	of	the	Shopping	Cart	

function display_cart($cart, $change = true, $images = 1) {
 // display items in shopping cart
 // optionally allow changes (true or false)
 // optionally include images (1 - yes, 0 - no)

 echo "<table border=\"0\" width=\"100%\" cellspacing=\"0\">
 <form action=\"show_cart.php\" method=\"post\">
 <tr><th colspan=\"".(1 + $images)."\" bgcolor=\"#cccccc\">Item</th>
 <th bgcolor=\"#cccccc\">Price</th>
 <th bgcolor=\"#cccccc\">Quantity</th>
 <th bgcolor=\"#cccccc\">Total</th>
 </tr>";

 //display each item as a table row
 foreach ($cart as $isbn => $qty) {
 $book = get_book_details($isbn);
 echo "<tr>";
 if($images == true) {
 echo "<td align=\"left\">";
 if (file_exists("images/{$isbn}.jpg")) {
 $size = GetImageSize("images/{$isbn}.jpg");
 if(($size[0] > 0) && ($size[1] > 0)) {
 echo "<img src=\"images/".htmlspecialchars($isbn).".jpg\"
 style=\"border: 1px solid black\"
 width=\"".($size[0]/3)."\"
 height=\"".($size[1]/3)."\"/>";
 }
 } else {
 echo " ";
 }
 echo "</td>";
 }
 echo "<td align=\"left\">
 ".htmlspecialchars($book['title'])."
 by ".htmlspecialchars($book['author'])."</td>
 <td align=\"center\">\$".number_format($book['price'], 2)."</td>
 <td align=\"center\">";

 // if we allow changes, quantities are in text boxes

Chapter	31	Building	a	Shopping	Cart	

31-18	
	

 if ($change == true) {
 echo "<input type=\"text\" name=\"".htmlspecialchars($isbn)."\"
value=\"".htmlspecialchars($qty)."\" size=\"3\">";
 } else {
 echo $qty;
 }
 echo "</td><td align=\"center\">\$".number_format($book['price']*$qty,2)."</td></tr>\n";
 }
 // display total row
 echo "<tr>
 <th colspan=\"".(2+$images)."\" bgcolor=\"#cccccc\"> </td>
 <th align=\"center\" bgcolor=\"#cccccc\">".htmlspecialchars($_SESSION['items'])."</th>
 <th align=\"center\" bgcolor=\"#cccccc\">
 \$".number_format($_SESSION['total_price'], 2)."
 </th>
 </tr>";

 // display save change button
 if($change == true) {
 echo "<tr>
 <td colspan=\"".(2+$images)."\"> </td>
 <td align=\"center\">
 <input type=\"hidden\" name=\"save\" value=\"true\"/>
 <input type=\"image\" src=\"images/save-changes.gif\"
 border=\"0\" alt=\"Save Changes\"/>
 </td>
 <td> </td>
 </tr>";
 }
 echo "</form></table>";
}

The basic flow of this function is as follows:

 1. Loop through each item in the cart and pass the ISBN of each item to get_book_details() so

that you can summarize the details of each book.
 2. Provide an image for each book, if one exists. Use the HTML image height and width tags to resize

the image a little smaller here. This means that the images will be a little distorted, but they are small
enough that this isn’t much of a problem. (If the distortion bothers you, you can always resize the
images using the gd library discussed in Chapter 21, “Generating Images,” or manually generate
different-size images for each product.)

 3. Make each cart entry a link to the appropriate book—that is, to show_book.php with the ISBN as a
parameter.

 4. If you are calling the function with the change parameter set to true (or not set—it defaults to true),
show the boxes with the quantities in them as a form with the Save Changes button at the end. (When
you reuse this function after checking out, you don’t want the user to be able to change her order.)

Nothing is terribly complicated in this function, but it does quite a lot of work, so you might find reading it
through carefully to be useful.

Adding Items to the Cart
If a user has come to the show_cart.php page by clicking an Add to Cart button, you have to do some work
before you can show her the contents of her cart. Specifically, you need to add the appropriate item to the cart,
as follows.

Chapter	31	Building	a	Shopping	Cart	
	

31-19	
	

First, if the user has not put any items in her cart before, she will not have a cart, so you need to create one:
if(!isset($_SESSION['cart'])) {

 $_SESSION['cart'] = array();

 $_SESSION['items'] = 0;

 $_SESSION['total_price'] ='0.00';

}

To begin with, the cart is empty.

Second, after you know that a cart is set up, you can add the item to it:
if(isset($_SESSION['cart'][$new])) {

 $_SESSION['cart'][$new]++;

} else {

 $_SESSION['cart'][$new] = 1;

}

Here, you check whether the item is already in the cart. If it is, you increment the quantity of that item in the
cart by one. If not, you add the new item to the cart.

Third, you need to work out the total price and number of items in the cart. For this, you use the
calculate_price() and calculate_items() functions, as follows:
$_SESSION['total_price'] = calculate_price($_SESSION['cart']);

$_SESSION['items'] = calculate_items($_SESSION['cart']);

These functions are located in the book_fns.php function library. The code for them is shown in Listings
31.11 and 31.12, respectively.

Listing 31.11	 calculate_price()	Function	from	book_fns.php—	Function	That	Calculates	and	Returns	
the	Total	Price	of	the	Contents	of	the	Shopping	Cart	

function calculate_price($cart) {
 // sum total price for all items in shopping cart
 $price = 0.0;
 if(is_array($cart)) {
 $conn = db_connect();
 foreach($cart as $isbn => $qty) {
 $query = "select price from books where isbn='".$conn->real_escape_string($isbn)."'";
 $result = $conn->query($query);
 if ($result) {
 $item = $result->fetch_object();
 $item_price = $item->price;
 $price +=$item_price*$qty;
 }
 }
 }
 return $price;
}

As you can see, the calculate_price() function works by looking up the price of each item in the cart in the
database. This process is somewhat slow, so to avoid doing this more often than you need to, you store the
price (and the total number of items, as well) as session variables and recalculate only when the cart changes.

Listing 31.12	 calculate_items()	Function	from	book_fns.php—Function	That	Calculates	and	Returns	the	
Total	Number	of	Items	in	the	Shopping	Cart	

function calculate_items($cart) {
 // sum total items in shopping cart
 $items = 0;
 if(is_array($cart)) {

Chapter	31	Building	a	Shopping	Cart	

31-20	
	

 foreach($cart as $isbn => $qty) {
 $items += $qty;
 }
 }
 return $items;
}

The calculate_items() function is simpler; it just goes through the cart and adds the quantities of each item
to get the total number of items using the array_sum() function. If there’s not yet an array (if the cart is
empty), it just returns 0 (zero).

Saving the Updated Cart
If the user comes to the show_cart.php script by clicking the Save Changes button, the process is a little
different. In this case, the user has arrived via a form submission. If you look closely at the code, you will see
that the Save Changes button is the submit button for a form. This form contains the hidden variable save. If
this variable is set, you know that you have come to this script from the Save Changes button. This means that
the user has presumably edited the quantity values in the cart, and you need to update them.

If you look back at the text boxes in the Save Changes form part of the script, found in the display_cart()
function in output_fns.php, you will see that they are named after the ISBN of the item that they represent,
as follows:
echo "<input type=\"text\" name=\"".htmlspecialchars($isbn)."\"

value=\"".htmlspecialchars($qty)."\" size=\"3\">";

Now look at the part of the script that saves the changes:
if(isset($_POST['save'])) {

 foreach ($_SESSION['cart'] as $isbn => $qty) {

 if($_POST[$isbn] == '0') {

 unset($_SESSION['cart'][$isbn]);

 } else {

 $_SESSION['cart'][$isbn] = $_POST[$isbn];

 }

 }

 $_SESSION['total_price'] = calculate_price($_SESSION['cart']);

 $_SESSION['items'] = calculate_items($_SESSION['cart']);

}

Here, you work your way through the shopping cart, and for each isbn in the cart, you check the POST variable
with that name. These variables are the form fields from the Save Changes form.

If any of the fields are set to zero, you remove that item from the shopping cart altogether, using unset().
Otherwise, you update the cart to match the form fields, as follows:
if($_POST[$isbn] == '0') {

 unset($_SESSION['cart'][$isbn]);

} else {

 $_SESSION['cart'][$isbn] = $_POST[$isbn];

}

After these updates, you again use calculate_price() and calculate_items() to work out the new values
of the total_price and items session variables.

Printing a Header Bar Summary

Chapter	31	Building	a	Shopping	Cart	
	

31-21	
	

In the header bar of each page in the site, a summary of what’s in the shopping cart is presented. This summary
is obtained by printing out the values of the session variables total_price and items. This is done in the
do_html_header() function.

These variables are registered when the user first visits the show_cart.php page. You also need some logic to
deal with the cases in which a user has not yet visited that page. This logic is also included in the
do_html_heaader() function:
if (!$_SESSION['items']) {

 $_SESSION['items'] = '0';

}

if (!$_SESSION['total_price']) {

 $_SESSION['total_price'] = '0.00';

}

Checking Out
When the user clicks the Go to Checkout button from the shopping cart, this action activates the checkout.php
script. The checkout page and the pages behind it should be accessed via the Secure Sockets Layer (SSL), but
the sample application does not force you to do this. (To read more about SSL, review Chapter 15, “Building a
Secure Web Application”)

The checkout page is shown in Figure 31.8.

Figure 31.8	 The	checkout.php	script	gets	the	customer’s	details.	

This script requires the customer to enter her address (and shipping address if it is different). It is quite a
simple script, which you can see by looking at the code in Listing 31.13.

Listing 31.13	 checkout.php—	Script	That	Gets	the	Customer	Details	

<?php
 //include our function set
 include ('book_sc_fns.php');

Chapter	31	Building	a	Shopping	Cart	

31-22	
	

 // The shopping cart needs sessions, so start one
 session_start();

 do_html_header("Checkout");

 if(($_SESSION['cart']) && (array_count_values($_SESSION['cart']))) {
 display_cart($_SESSION['cart'], false, 0);
 display_checkout_form();
 } else {
 echo "<p>There are no items in your cart</p>";
 }

 display_button("show_cart.php", "continue-shopping", "Continue Shopping");

 do_html_footer();
?>

There are no great surprises in this script. If the cart is empty, the script will notify the customer; otherwise, it
will display the form shown in Figure 31.8.

If a user continues by clicking the Purchase button at the bottom of the form, she will be taken to the
purchase.php script. You can see the output of this script in Figure 31.9.

Figure 31.9	 The	purchase.php	script	calculates	shipping	and	the	final	order	total	
and	gets	the	customer’s	payment	details.	

The code for the purchase.php script is slightly more complicated than the code for checkout.php. It is
shown in Listing 31.14.

Listing 31.14	 purchase.php—Script	That	Stores	the	Order	Details	in	the	Database	and	Gets	the	
Payment	Details	

<?php

 include ('book_sc_fns.php');

Chapter	31	Building	a	Shopping	Cart	
	

31-23	
	

 // The shopping cart needs sessions, so start one
 session_start();

 do_html_header("Checkout");

 // create short variable names
 $name = $_POST['name'];
 $address = $_POST['address'];
 $city = $_POST['city'];
 $zip = $_POST['zip'];
 $country = $_POST['country'];

 // if filled out
 if (($_SESSION['cart']) && ($name) && ($address) && ($city)
 && ($zip) && ($country)) {
 // able to insert into database
 if(insert_order($_POST) != false) {
 //display cart, not allowing changes and without pictures
 display_cart($_SESSION['cart'], false, 0);

 display_shipping(calculate_shipping_cost());

 //get credit card details
 display_card_form($name);

 display_button("show_cart.php", "continue-shopping", "Continue Shopping");
 } else {
 echo "<p>Could not store data, please try again.</p>";
 display_button('checkout.php', 'back', 'Back');
 }
 } else {
 echo "<p>You did not fill in all the fields, please try again.</p><hr />";
 display_button('checkout.php', 'back', 'Back');
 }

 do_html_footer();
?>

The logic here is straightforward: You check that the user filled out the form and inserted details into the
database using a function called insert_order(). This simple function pops the customer details into the
database. The code for it is shown in Listing 31.15.

Listing 31.15	 insert_order()	Function	from	order_fns.php—Function	That	Inserts	All	the	Details	of	
the	Customer’s	Order	into	the	Database	

function insert_order($order_details) {
 // extract order_details out as variables
 extract($order_details);

 // set shipping address same as address
 if((!$ship_name) && (!$ship_address) && (!$ship_city)
 && (!$ship_state) && (!$ship_zip) && (!$ship_country)) {
 $ship_name = $name;
 $ship_address = $address;
 $ship_city = $city;
 $ship_state = $state;
 $ship_zip = $zip;

Chapter	31	Building	a	Shopping	Cart	

31-24	
	

 $ship_country = $country;
 }

 $conn = db_connect();

 // we want to insert the order as a transaction
 // start one by turning off autocommit
 $conn->autocommit(FALSE);

 // insert customer address
 $query = "select customerid from customers where
 name = '".$conn->real_escape_string($name) .
 "' and address = '". $conn->real_escape_string($address)."'
 and city = '".$conn->real_escape_string($city) .
 "' and state = '".$conn->real_escape_string($state)."'
 and zip = '".$conn->real_escape_string($zip) .
 "' and country = '".$conn->real_escape_string($country)."'";

 $result = $conn->query($query);

 if($result->num_rows>0) {
 $customer = $result->fetch_object();
 $customerid = $customer->customerid;
 } else {
 $query = "insert into customers values
 ('', '" . $conn->real_escape_string($name) ."','" .
 $conn->real_escape_string($address) .
 "','". $conn->real_escape_string($city) ."','" .
 $conn->real_escape_string($state) .
 "','". $conn->real_escape_string($zip) ."','" .
 $conn->real_escape_string($country)."')";
 $result = $conn->query($query);

 if (!$result) {
 return false;
 }
 }

 $customerid = $conn->insert_id;

 $date = date("Y-m-d");

 $query = "insert into orders values
 ('', '". $conn->real_escape_string($customerid) . "', '" .
 $conn->real_escape_string($_SESSION['total_price']) .
 "', '". $conn->real_escape_string($date) ."', 'PARTIAL',
 '" . $conn->real_escape_string($ship_name) . "', '" .
 $conn->real_escape_string($ship_address) .
 "', '". $conn->real_escape_string($ship_city)."', '" .
 $conn->real_escape_string($ship_state) ."',
 '". $conn->real_escape_string($ship_zip) . "', '".
 $conn->real_escape_string($ship_country)."')";

 $result = $conn->query($query);
 if (!$result) {
 return false;
 }

Chapter	31	Building	a	Shopping	Cart	
	

31-25	
	

 $query = "select orderid from orders where
 customerid = '". $conn->real_escape_string($customerid)."' and
 amount > (".(float)$_SESSION['total_price'] ."-.001) and
 amount < (". (float)$_SESSION['total_price']."+.001) and
 date = '".$conn->real_escape_string($date)."' and
 order_status = 'PARTIAL' and
 ship_name = '".$conn->real_escape_string($ship_name)."' and
 ship_address = '".$conn->real_escape_string($ship_address)."' and
 ship_city = '".$conn->real_escape_string($ship_city)."' and
 ship_state = '".$conn->real_escape_string($ship_state)."' and
 ship_zip = '".$conn->real_escape_string($ship_zip)."' and
 ship_country = '".$conn->real_escape_string($ship_country)."'";

 $result = $conn->query($query);

 if($result->num_rows>0) {
 $order = $result->fetch_object();
 $orderid = $order->orderid;
 } else {
 return false;
 }

 // insert each book
 foreach($_SESSION['cart'] as $isbn => $quantity) {
 $detail = get_book_details($isbn);
 $query = "delete from order_items where
 orderid = '". $conn->real_escape_string($orderid)."' and isbn = '" .
 $conn->real_escape_string($isbn)."'";
 $result = $conn->query($query);
 $query = "insert into order_items values
 ('". $conn->real_escape_string($orderid) ."', '" .
 $conn->real_escape_string($isbn) .
 "', ". $conn->real_escape_string($detail['price']) .", " .
 $conn->real_escape_string($quantity). ")";
 $result = $conn->query($query);
 if(!$result) {
 return false;
 }
 }

 // end transaction
 $conn->commit();
 $conn->autocommit(TRUE);

 return $orderid;
}

The insert_order() function is rather long because you need to insert the customer’s details, order details,
and details of each book she wants to buy.

You will note that the different parts of the insert are enclosed in a transaction, beginning with
$conn->autocommit(FALSE);

and ending with
$conn->commit();

$conn->autocommit(TRUE);

Chapter	31	Building	a	Shopping	Cart	

31-26	
	

This is the only place in this application where you need to use a transaction. How do you avoid having to do it
elsewhere? Look at the code in the db_connect() function:
function db_connect() {

 $result = new mysqli('localhost', 'book_sc', 'password', 'book_sc');

 if (!$result) {

 return false;

 }

 $result->autocommit(TRUE);

 return $result;

}

Obviously, this is slightly different from the code used for this function in other chapters. After creating the
connection to MySQL, you should turn on auto-commit mode. This ensures that each SQL statement is
automatically committed, as we have previously discussed. When you actually want to use a multi-statement
transaction, you turn off auto-commit, perform a series of inserts, commit the data, and then re-enable auto-
commit mode.

You then work out the shipping costs to the customer’s address and tell her how much it will be with the
following line of code:
display_shipping(calculate_shipping_cost());

The code used here for calculate_shipping_cost() always returns $20. When you actually set up a
shopping site, you must choose a delivery method, find out how much shipping costs for different destinations,
and calculate those costs accordingly.

You then display a form for the user to fill in her credit card details by using the display_card_form()
function from the output_fns.php library.

Implementing Payment
When the user clicks the Purchase button, you process her payment details using the process.php script. You
can see the results of a successful payment in Figure 31.10.

Figure 31.10	 This	transaction	was	successful,	and	the	items	will	now	be	shipped.	

Chapter	31	Building	a	Shopping	Cart	
	

31-27	
	

The code for process.php can be found in Listing 31.16.

Listing 31.16	 process.php—	Script	That	Processes	the	Customer’s	Payment	and	Tells	Her	the	Result	

<?php
 include ('book_sc_fns.php');
 // The shopping cart needs sessions, so start one
 session_start();

 do_html_header('Checkout');

 $card_type = $_POST['card_type'];
 $card_number = $_POST['card_number'];
 $card_month = $_POST['card_month'];
 $card_year = $_POST['card_year'];
 $card_name = $_POST['card_name'];

 if(($_SESSION['cart']) && ($card_type) && ($card_number) &&
 ($card_month) && ($card_year) && ($card_name)) {
 //display cart, not allowing changes and without pictures
 display_cart($_SESSION['cart'], false, 0);

 display_shipping(calculate_shipping_cost());

 if(process_card($_POST)) {
 //empty shopping cart
 session_destroy();
 echo "<p>Thank you for shopping with us. Your order has been placed.</p>";
 display_button("index.php", "continue-shopping", "Continue Shopping");
 } else {
 echo "<p>Could not process your card. Please contact the card
 issuer or try again.</p>";
 display_button("purchase.php", "back", "Back");
 }
 } else {
 echo "<p>You did not fill in all the fields, please try again.</p><hr />";
 display_button("purchase.php", "back", "Back");
 }

 do_html_footer();
?>

You process the user’s card and, if all is successful, destroy her session.

The card processing function as it is written simply returns true. If you were actually implementing it, you
would need to perform some validation (checking that the expiry date was valid and the card number well
formed) and then process the actual payment.

Implementing an Administration Interface
The administration interface we implemented is very simple. We just built a Web interface to the database with
some front-end authentication based on similar examples elsewhere in the book. We included it here for
completeness, but with little discussion.

Chapter	31	Building	a	Shopping	Cart	

31-28	
	

The administration interface requires a user to log in via the login.php file, which then takes him to the
administration menu, admin.php. The login page is shown in Figure 31.11. The administration menu is shown
in Figure 31.12.

Figure 31.11	 Users	must	pass	through	the	login	page	to	access	the	administration	
functions.	

Figure 31.12	 The	administration	menu	allows	access	to	the	administration	
functions.	

The	code	for	the	admin	menu	is	shown	in	Listing	31.17.	

Listing 31.17	 admin.php—Script	That	Authenticates	the	Administrator	and	Lets	Him	Access	the	
Administration	Functions	

<?php

Chapter	31	Building	a	Shopping	Cart	
	

31-29	
	

// include function files for this application
require_once('book_sc_fns.php');
session_start();

if (($_POST['username']) && ($_POST['passwd'])) {
 // they have just tried logging in

 $username = $_POST['username'];
 $passwd = $_POST['passwd'];

 if (login($username, $passwd)) {
 // if they are in the database register the user id
 $_SESSION['admin_user'] = $username;

 } else {
 // unsuccessful login
 do_html_header("Problem:");
 echo "<p>You could not be logged in.

 You must be logged in to view this page.</p>";
 do_html_url('login.php', 'Login');
 do_html_footer();
 exit;
 }
}

do_html_header("Administration");
if (check_admin_user()) {
 display_admin_menu();
} else {
 echo "<p>You are not authorized to enter the administration area.</p>";
}
do_html_footer();
?>

After the administrator reaches this point, he can change his password or log out as demonstrated in previous
chapters.

You identify the administration user after login by means of the admin_user session variable and the
check_admin_user() function. This function and the others used by the administrative scripts can be found in
the function library admin_fns.php.

If the administrator chooses to add a new category or book, he will go to either insert_category_form.php
or insert_book_form.php, as appropriate. Each of these scripts presents the administrator with a form to fill
in. Each is processed by a corresponding script (insert_category.php and insert_book.php), which
verifies that the form is filled out and inserts the new data into the database. Here, we look at the book versions
of the scripts only because they are similar to one another.

The output of insert_book_form.php is shown in Figure 31.13.

Chapter	31	Building	a	Shopping	Cart	

31-30	
	

Figure 31.13	 This	form	allows	the	administrator	to	enter	new	books	into	the	online	
catalog.	

Notice that the Category field for books is an HTML SELECT element. The options for this SELECT come from
a call to the get_categories() function you looked at previously.

When the Add Book button is clicked, the insert_book.php script is activated. The code for this script is
shown in Listing 31.18.

Listing 31.18	 insert_book.php—Script	That	Validates	the	New	Book	Data	and	Puts	It	into	the	Database	

<?php

// include function files for this application
require_once('book_sc_fns.php');
session_start();

do_html_header("Adding a book");
if (check_admin_user()) {
 if (filled_out($_POST)) {
 $isbn = $_POST['isbn'];
 $title = $_POST['title'];
 $author = $_POST['author'];
 $catid = $_POST['catid'];
 $price = $_POST['price'];
 $description = $_POST['description'];

 if(insert_book($isbn, $title, $author, $catid, $price, $description)) {
 echo "<p>Book ".htmlspecialchars($title)." was added to the database.</p>";
 } else {
 echo "<p>Book ".htmlspecialchars($title)." could not be added to the database.</p>";
 }
 } else {
 echo "<p>You have not filled out the form. Please try again.</p>";
 }

 do_html_url("admin.php", "Back to administration menu");

Chapter	31	Building	a	Shopping	Cart	
	

31-31	
	

} else {
 echo "<p>You are not authorised to view this page.</p>";
}

do_html_footer();

?>

You can see that this script calls the function insert_book(). This function and the others used by the
administrative scripts can be found in the function library admin_fns.php.

In addition to adding new categories and books, the administrative user can edit and delete these items. We
implemented this capability by reusing as much code as possible. When the administrator clicks the Go to
Main site link in the administration menu, he goes to the category index at index.php and can navigate the site
in the same way as a regular user, using the same scripts.

There is a difference in the administrative navigation, however: Administrators see different options based on
the fact that they have the registered session variable admin_user. For example, if you look at the
show_book.php page that you looked at previously in the chapter, you will see the different menu options
shown in Figure 31.14.

Figure 31.14	 The	show_book.php	script	produces	different	output	for	an	
administrative	user.	

The administrator has access to two new options on this page: Edit Item and Admin Menu. Notice that the
shopping cart does not appear in the upper-right corner; instead, this page has a Log Out button.

The code for this page is all there, back in Listing 31.8, as follows:
if(check_admin_user()) {

 display_button("edit_book_form.php?isbn=". urlencode($isbn),

 "edit-item", "Edit Item");

 display_button("admin.php", "admin-menu", "Admin Menu");

 display_button($target, "continue", "Continue");

 }

Chapter	31	Building	a	Shopping	Cart	

31-32	
	

If you look back at the show_cat.php script, you will see that it also has these options built into it.

If the administrator clicks the Edit Item button, he will go to the edit_book_form.php script. The output of
this script is shown in Figure 31.15.

Figure 31.15	 The	edit_book_form.php	script	gives	the	administrator	access	to	
edit	book	details	or	delete	a	book.	

This form is, in fact, the same one used to get the book’s details in the first place. We built an option into that
form to pass in and display existing book data. We did the same thing with the category form. To see what we
mean, look at Listing 31.19.

Listing 31.19	 display_book_form()	Function	from	admin_fns.php—Form	That	Does	Double	Duty	as	an	
Insertion	and	Editing	Form	

function display_book_form($book = '') {
// This displays the book form.
// It is very similar to the category form.
// This form can be used for inserting or editing books.
// To insert, don't pass any parameters. This will set $edit
// to false, and the form will go to insert_book.php.
// To update, pass an array containing a book. The
// form will be displayed with the old data and point to update_book.php.
// It will also add a "Delete book" button.

 // if passed an existing book, proceed in "edit mode"
 $edit = is_array($book);

 // most of the form is in plain HTML with some
 // optional PHP bits throughout
?>
 <form method="post"
 action="<?php echo $edit ? 'edit_book.php' : 'insert_book.php';?>">

Chapter	31	Building	a	Shopping	Cart	
	

31-33	
	

 <table border="0">
 <tr>
 <td>ISBN:</td>
 <td><input type="text" name="isbn"
 value="<?php echo htmlspecialchars($edit ? $book['isbn'] : ''); ?>" /></td>
 </tr>
 <tr>
 <td>Book Title:</td>
 <td><input type="text" name="title"
 value="<?php echo htmlspecialchars($edit ? $book['title'] : ''); ?>" /></td>
 </tr>
 <tr>
 <td>Book Author:</td>
 <td><input type="text" name="author"
 value="<?php echo htmlspecialchars($edit ? $book['author'] : ''); ?>" /></td>
 </tr>
 <tr>
 <td>Category:</td>
 <td><select name="catid">
 <?php
 // list of possible categories comes from database
 $cat_array=get_categories();
 foreach ($cat_array as $thiscat) {
 echo "<option value=\"".htmlspecialchars($thiscat['catid'])."\"";
 // if existing book, put in current catgory
 if (($edit) && ($thiscat['catid'] == $book['catid'])) {
 echo " selected";
 }
 echo ">".htmlspecialchars($thiscat['catname'])."</option>";
 }
 ?>
 </select>
 </td>
 </tr>
 <tr>
 <td>Price:</td>
 <td><input type="text" name="price"
 value="<?php echo htmlspecialchars($edit ? $book['price'] : ''); ?>" /></td>
 </tr>
 <tr>
 <td>Description:</td>
 <td><textarea rows="3" cols="50"
 name="description"><?php echo htmlspecialchars($edit ? $book['description'] : '');
?></textarea></td>
 </tr>
 <tr>
 <td <?php if (!$edit) { echo "colspan=2"; }?> align="center">
 <?php
 if ($edit)
 // we need the old isbn to find book in database
 // if the isbn is being updated
 echo "<input type=\"hidden\" name=\"oldisbn\"
 value=\"".htmlspecialchars($book['isbn'])."\" />";
 ?>
 <input type="submit"
 value="<?php echo $edit ? 'Update' : 'Add'; ?> Book" />
 </form></td>
 <?php

Chapter	31	Building	a	Shopping	Cart	

31-34	
	

 if ($edit) {
 echo "<td>
 <form method=\"post\" action=\"delete_book.php\">
 <input type=\"hidden\" name=\"isbn\"
 value=\"".htmlspecialchars($book['isbn'])."\" />
 <input type=\"submit\" value=\"Delete book\"/>
 </form></td>";
 }
 ?>
 </td>
 </tr>
 </table>
 </form>
<?php
}

If you pass in an array containing the book data, the form will be rendered in edit mode and will fill in the
fields with the existing data:
<input type="text" name="price"

 value="<?php echo htmlspecialchars($edit ? $book['price'] : ''); ?>" />

You even get a different submit button. In fact, for the edit form, you get two—one to update the book and one
to delete it. These buttons call the scripts edit_book.php and delete_book.php, which update the database
accordingly.

The category versions of these scripts work in much the same way, except for one thing. When an
administrator tries to delete a category, it will not be deleted if any books are still in it. (This is checked with a
database query.) This approach prevents any problems you might get with deletion anomalies. We discussed
these anomalies in Chapter 8, “Designing Your Web Database.” In this case, if a category that still had books
in it was deleted, these books would become orphans. You wouldn’t know what category they were in, and you
would have no way of navigating to them!

That’s the overview of the administration interface.

Extending the Project
If you followed along with this project, you have built a fairly simple shopping cart system. There are many
additions and enhancements you could make:

▪ In a real online store, you would need to build some kind of order tracking and fulfillment system. At the
moment, you have no way of seeing the orders that have been placed.

▪ Customers want to be able to check the progress of their orders without having to contact you. We feel
that it is important that a customer does not have to log in to browse. However, providing existing
customers a way to authenticate themselves enables them to see past orders and enables you to tie
behaviors together into a profile.

▪ At present, the images for books have to be transferred via FTP to the image directory and given the
correct name. You could add file upload to the book insertion page to make this process easier.

▪ You could add user login, personalization, and book recommendations; online reviews; affiliate
programs; stock level checking; and so on. The possibilities are endless.

