Program Verification

Binary Search
The Problem
Code Derivation
Verification
Principles

From Programming Pearls, Copyright [J 2000, Lucent Technologies Pearls-4-1

Binary Search

The Problem.

Input: An integer n=0 and a sorted array
X[0] £ x[1] £ x[2] ... £ x[n—1].

Output: The integer p tells f's location in
X[0..n=1]. f p=—1then tis notin x[0..n—-1];
otherwise O<p <nand t=x[p].

The Algorithm. Keep track of a range known to con-
tain t. The range is initially empty, and is shrunk by
comparing the middle element to t. This example
searches for 50 in x[0..15].

2626|3131 |32|38|38({41|43|46|50|53|58|59|79 |97

Difficulty. The first binary search was published in
1946; when was the first correct search published?

From Programming Pearls, Copyright [J 2000, Lucent Technologies Pearls-4-2

Derivation, Step 1

Initialize range to 0..n-1
| oop
{ invariant: nustbe(range) }
| f range Is enpty,
break and report that t
IS not in the array
conpute m the mddle of the range
use mas a probe to shrink the range
If t Iis found during
t he shrinking process,

break and report its position

From Programming Pearls, Copyright [J 2000, Lucent Technologies Pearls-4-3

Derivation, Step 2

Represent the range /.. u by integers /and wu.

{ invariant: nustbe(l, u) }

1f 1 >u
p = -1; break

m=(l +u) / 2

use mas a probe to shrink |I..u
I1f t Iis found during
t he shrinking process,

break and note its position

From Programming Pearls, Copyright [J 2000, Lucent Technologies Pearls-4-4

Binary Search Code

| oop

{ mustbe(l, u) }

p = -1; break

Xx[mM ==t: p = m break

From Programming Pearls, Copyright [J 2000, Lucent Technologies

Pearls-4-5

Verifying the Code

{ mustbe(0, n-1) }
| =0 u=n-1
{ mustbe(l, u) }
| oop
{ mustbe(l, u) }

1f 1 >u
{ | >u & nustbe(l, u) }

{ t 1s not in the array }

p = -1, break
{ mustbe(l, u) & | <= u}
m=(l +u) / 2
{ mustbe(l, u) & | <= m<=u }
case

x[m < t:

{ nustbe(l, u) && cantbe(0, nm }

{ mustbe(m+l, u) }
| = mtl
{ mustbe(l, u) }
X[m ==1t:
{ x[m ==1}
p = m break
x[m > t:

{ rrustbe(l, u) & & cantbe(m n) }

{ nmustbe(l, m1l) }

u=ml

{ mustbe(l, u) }
{ mustbe(l, u) }

rom Programming Pearls, Copyright [J 2000, Lucent Technologies

Binary Search in C

| nt bi narysearch(Dat aType t)
[* return (any) position

I1f t in sorted x[0..n-1] or

-1 if t 1s not present

{ int I, u m
| = 0;
u = n-1;
while (I <= u) {
m= (I +u) / 2
1f (xX[n] <1t)
| = m+1;
else if (xX[mM ==1)
return m
else /* x[m >t */
u=mal,;
}
return -1;

From Programming Pearls, Copyright [J 2000, Lucent Technologies

Pearls-4-7

Principles

Tools of Verification
Assertions

Control Structures: sequential, selection, iteration

Initialization
Preservation | M. { Invariant }

Termination

Functions

Roles of Verification
Writing subtle code
Walk-throughs, testing, debugging

General: A language for talking about code

From Programming Pearls, Copyright [J 2000, Lucent Technologies Pearls-4-8

