
Program Verification

Binary Search
The Problem
Code Derivation
Verification

Principles

From Programming Pearls, Copyright  2000, Lucent Technologies Pearls-4-1

Binary Search

The Problem.

Input: An integer n≥0 and a sorted array
x[0] ≤ x[1] ≤ x[2] ≤ ... ≤ x[n − 1].

Output: The integer p tells t’s location in
x[0..n − 1]. If p = − 1 then t is not in x[0..n − 1];
otherwise 0≤p < n and t = x[p].

The Algorithm. Keep track of a range known to con-
tain t. The range is initially empty, and is shrunk by
comparing the middle element to t. This example
searches for 50 in x[0.. 15].

26 26 31 31 32 38 38 41 43 46 50 53 58 59 79 97

1 23 4

Difficulty. The first binary search was published in
1946; when was the first correct search published?

From Programming Pearls, Copyright  2000, Lucent Technologies Pearls-4-2

Derivation, Step 1

initialize range to 0..n-1

loop

{ invariant: mustbe(range) }

if range is empty,

break and report that t

is not in the array

compute m, the middle of the range

use m as a probe to shrink the range

if t is found during

the shrinking process,

break and report its position

From Programming Pearls, Copyright  2000, Lucent Technologies Pearls-4-3

Derivation, Step 2

Represent the range l..u by integers l and u.

l = 0; u = n-1

loop

{ invariant: mustbe(l, u) }

if l > u

p = -1; break

m = (l + u) / 2

use m as a probe to shrink l..u

if t is found during

the shrinking process,

break and note its position

From Programming Pearls, Copyright  2000, Lucent Technologies Pearls-4-4

Binary Search Code

l = 0; u = n-1

loop

{ mustbe(l, u) }

if l > u

p = -1; break

m = (l + u) / 2

case

x[m] < t: l = m+1

x[m] == t: p = m; break

x[m] > t: u = m-1

From Programming Pearls, Copyright  2000, Lucent Technologies Pearls-4-5

Verifying the Code

{ mustbe(0, n-1) }
l = 0; u = n-1
{ mustbe(l, u) }
loop

{ mustbe(l, u) }
if l > u
{ l > u && mustbe(l, u) }

{ t is not in the array }
p = -1; break

{ mustbe(l, u) && l <= u }
m = (l + u) / 2
{ mustbe(l, u) && l <= m <= u }
case

x[m] < t:
{ mustbe(l, u) && cantbe(0, m) }
{ mustbe(m+1, u) }
l = m+1
{ mustbe(l, u) }

x[m] == t:
{ x[m] == t }
p = m; break

x[m] > t:
{ mustbe(l, u) && cantbe(m, n) }
{ mustbe(l, m-1) }
u = m-1
{ mustbe(l, u) }

{ mustbe(l, u) }

From Programming Pearls, Copyright  2000, Lucent Technologies Pearls-4-6

Binary Search in C

int binarysearch(DataType t)
/* return (any) position

if t in sorted x[0..n-1] or
-1 if t is not present */

{ int l, u, m;
l = 0;
u = n-1;
while (l <= u) {

m = (l + u) / 2;
if (x[m] < t)

l = m+1;
else if (x[m] == t)

return m;
else /* x[m] > t */

u = m-1;
}
return -1;

}

From Programming Pearls, Copyright  2000, Lucent Technologies Pearls-4-7

Principles

Tools of Verification

Assertions

Control Structures: sequential, selection, iteration

Initialization

•

Termination

............. { Invariant }Preservation

Functions

Roles of Verification

Writing subtle code

Walk-throughs, testing, debugging

General: A language for talking about code

From Programming Pearls, Copyright  2000, Lucent Technologies Pearls-4-8

