
String Algorithms

The Longest Duplicated String
Markov Text

From Programming Pearls, Copyright  2000, Lucent Technologies Pearls-15-1

Longest Duplicated String

The Problem

Input: ‘‘Ask not what your country can do for you,
but what you can do for your country’’.

Output: ‘‘ can do for you’’ (15 chars)

A Simple Algorithm (at least quadratic)

maxlen = -1
for i = [0, n)

for j = (i, n)
if (l=comlen(&c[i], &c[j]))

> maxlen
maxlen = l
maxi = i
maxj = j

An Important Function

int comlen(char *p, char *q)
i = 0
while *p && (*p++ == *q++)

i++
return i

From Programming Pearls, Copyright  2000, Lucent Technologies Pearls-15-2

A Fast Algorithm

Key Data Structures

#define MAXN 5000000
char c[MAXN], *a[MAXN];

Input ‘‘Suffix Array’’ for ‘‘banana’’:

a[0]: banana
a[1]: anana
a[2]: nana
a[3]: ana
a[4]: na
a[5]: a

The Sorted Suffix Array

a[0]: a
a[1]: ana
a[2]: anana
a[3]: banana
a[4]: na
a[5]: nana

Scan through to find longest duplicated string
(‘‘ana’’).

From Programming Pearls, Copyright  2000, Lucent Technologies Pearls-15-3

The Suffix Array Code

The Code (usually about O(n log n))

while (ch = getchar()) != EOF
a[n] = &c[n]
c[n++] = ch

c[n] = 0
qsort(a, n, sizeof(char *), pstrcmp)
for i = [0, n)

if comlen(a[i], a[i+1]) > maxlen
maxlen = comlen(a[i], a[i+1])
maxi = i

printf("%.*s\n", maxlen, a[maxi])

4.8 secs on 807,503 characters of Homer’s Iliad:

whose sake so many of the Achaeans have died
at Troy, far from their homes? Go about at once
among the host, and speak fairly to them, man
by man, that they draw not their ships into the
sea.

From Programming Pearls, Copyright  2000, Lucent Technologies Pearls-15-4

Markov English Letters

Monkey Typing: uzlpcbizdmddk njsdzyyvfgxbgjjgbt-
sak rqvpgnsbyputvqqdtmgltz ynqotqigexjumqphu-
jcfwn ll jiexpyqzgsdllgcoluphl sefsrvqqytjakmav

Order-0: saade ve mw hc n entt da k eethetocusos-
selalwo gx fgrsnoh,tvettaf aetnlbilo fc lhd okleut-
sndyeoshtbogo eet ib nheaoopefni ngent

Order-1: t I amy, vin. id wht omanly heay atuss n
macon aresethe hired boutwhe t, tl, ad torurest t plur
I wit hengamind tarer-plarody thishand.

Order-2: Ther I the heingoind of-pleat, blur it dwere
wing waske hat trooss. Yout lar on wassing, an sit."
"Yould," "I that vide was nots ther.

Order-3: I has them the saw the secorrow. And win-
tails on my my ent, thinks, fore voyager lanated the
been elsed helder was of him a very free

Order-4: His heard." "Exactly he very glad trouble,
and by Hopkins! That it on of the who difficentralia.
He rushed likely?" "Blood night that.

From Programming Pearls, Copyright  2000, Lucent Technologies Pearls-15-5

Markov English Words

A finite-state Markov chain with stationary transition
probabilities.

Order-1: The table shows how many contexts; it
uses two or equal to the sparse matrices were not
chosen. In Section 13.1, for a more efficient that
‘‘the more time was published by calling recursive
structure translates to build scaffolding to try to know
of selected and testing and more robust

Order-2: The program is guided by verification
ideas, and the second errs in the STL implementa-
tion (which guarantees good worst-case perfor-
mance), and is especially rich in speedups due to
Gordon Bell. Everything should be to use a macro:
for n = 10 , 000, its run time;

Order-3: A Quicksort would be quite efficient for the
main-memory sorts, and it requires only a few dis-
tinct values in this particular problem, we can write
them all down in the program, and they were making
progress towards a solution at a snail’s pace.

From Programming Pearls, Copyright  2000, Lucent Technologies Pearls-15-6

Algorithms and Programs

Shannon, 1948: ‘‘To construct [order-1 letter-level
text] for example, one opens a book at random and
selects a letter at random on the page. This letter is
recorded. The book is then opened to another page
and one reads until this letter is encountered. The
succeeding letter is then recorded. Turning to
another page this second letter is searched for and
the succeeding letter recorded, etc. A similar pro-
cess was used for [order-1 and order-2 letter-level
text, and order-0 and order-1 word-level text]. It
would be interesting if further approximations could
be constructed, but the labor involved becomes
enormous at the next stage.’’

Kernighan and Pike’s Exposition, 1999

Build a data structure while training

Randomly traverse the structure to generate

Implemented in C, C++, Java, Awk, Perl

From Programming Pearls, Copyright  2000, Lucent Technologies Pearls-15-7

Suffix Arrays to the Rescue

Word array for k = 1 ‘‘of the people, by the people,
for the people’’:

word[0]: by the
word[1]: for the
word[2]: of the
word[3]: people
word[4]: people, for
word[5]: people, by
word[6]: the people,
word[7]: the people
word[8]: the people,

The Critical Function

int wordncmp(char *p, char* q)
n = k
for (; *p == *q; p++, q++)

if (*p == 0 && --n == 0)
return 0

return *p - *q

From Programming Pearls, Copyright  2000, Lucent Technologies Pearls-15-8

Code Sketch, Part 1

Read and Store Training Sample

word[0] = inputchars
while scanf("%s", word[nword]) != EOF

word[nword+1] = word[nword] +
strlen(word[nword]) + 1

nword++
/* put k null characters at end */
for i = [0, k)

word[nword][i] = 0

Print First k Words

for i = [0, k)
print word[i]

Sort The Array

qsort(word, nword, sizeof(word[0]), sortcmp)

From Programming Pearls, Copyright  2000, Lucent Technologies Pearls-15-9

Code Sketch, Part 2

Generate Text

phrase = first phrase in input array
loop

perform a binary search for phrase
in word[0..nword-1]

for all phrases equal in k words
select one at random,

pointed to by p
phrase = word following p
if k-th word of phrase is length 0

break
print k-th word of phrase

From Programming Pearls, Copyright  2000, Lucent Technologies Pearls-15-10

Pseudocode for Text Generation

phrase = inputchars
for (left = 10000; left > 0; left--)

l = -1
u = nword
while l+1 != u

m = (l + u) / 2
if wordncmp(word[m], phrase) < 0

l = m
else

u = m
for (i = 0; wordncmp(phrase, word[u+i])

== 0; i++)
if rand() % (i+1) == 0

p = word[u+i]
phrase = skip(p, 1)
if strlen(skip(phrase, k-1)) == 0

break
print skip(phrase, k-1)

Comparison to Typical Approaches

Similar speed, less space, less code

From Programming Pearls, Copyright  2000, Lucent Technologies Pearls-15-11

The Complete Code
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

char inputchars[4300000];
char *word[800000];
int nword = 0;
int k = 2;

int wordncmp(char *p, char* q)
{ int n = k;

for (; *p == *q; p++, q++)
if (*p == 0 && --n == 0)

return 0;
return *p - *q;

}

int sortcmp(char **p, char **q)
{ return wordncmp(*p, *q);
}

char *skip(char *p, int n)
{ for (; n > 0; p++)

if (*p == 0)
n--;

return p;
}

int main()
{ int i, wordsleft = 10000, l, m, u;

char *phrase, *p;
word[0] = inputchars;
while (scanf("%s", word[nword]) != EOF) {

word[nword+1] = word[nword] + strlen(word[nword]) + 1;
nword++;

}
for (i = 0; i < k; i++)

word[nword][i] = 0;
for (i = 0; i < k; i++)

printf("%s0, word[i]);
qsort(word, nword, sizeof(word[0]), sortcmp);
phrase = inputchars;
for (; wordsleft > 0; wordsleft--) {

l = -1;
u = nword;
while (l+1 != u) {

m = (l + u) / 2;
if (wordncmp(word[m], phrase) < 0)

l = m;
else

u = m;
}
for (i = 0; wordncmp(phrase, word[u+i]) == 0; i++)

if (rand() % (i+1) == 0)
p = word[u+i];

phrase = skip(p, 1);
if (strlen(skip(phrase, k-1)) == 0)

break;
printf("%s0, skip(phrase, k-1));

}
return 0;

}

From Programming Pearls, Copyright  2000, Lucent Technologies Pearls-15-12

