
Anagrams

Definitions
Algorithms

Two Slow Algorithms
A Fast Algorithm

An Implementation
The Strategy
The Components
The Complete Program

From Programming Pearls, Copyright  2000, Lucent Technologies Pearls-2-1

Anagrams

Definition. Two words are anagrams if one can be
formed by permuting the letters in the other.

A 6-element anagram set:

opts pots post stop spot tops

The Problem. How would you compute all anagram
sets in a dictionary of 230,000 English words?
(Related problem: how to find all anagrams of an
input word?)

From Programming Pearls, Copyright  2000, Lucent Technologies Pearls-2-2

Two Slow Algorithms

Examine All Permutations. ‘‘cholecystoduodenos-
tomy’’ has 22 ! ∼∼ 1. 1×1021 permutations. One
picosecond each gives 1. 1×109 seconds, or a few
decades.

(The rule of thumb that ‘‘π seconds is a nanocen-
tury’’ is half a percent off the true value of
3. 155×107 seconds per year.)

Examine All Pairs of Words. Assume 230,000
words in the dictionary, 1 microsec per compare.

230 , 000 words × 230 , 000 comps/word

× 1 microsec/comp

= 52900×106 microsecs

= 52900 secs

∼∼ 14. 7 hours

From Programming Pearls, Copyright  2000, Lucent Technologies Pearls-2-3

A Fast Algorithm

The Idea. Sign words so that those in the same
anagram class have the same signature, and then
collect equal signatures.

The Signature. Sort letters within a word. The sig-
nature of ‘‘deposit’’ is ‘‘deiopst’’, which is also the
signature of ‘‘dopiest’’.

Collecting the Classes. Sort the words by their sig-
natures.

A Summary. Sort this way (with a horizontal wave
of the hand) then that way (a vertical wave).

From Programming Pearls, Copyright  2000, Lucent Technologies Pearls-2-4

Implementation with Pipes

A pipeline of three programs. Example:

pans

pots

opt

snap

stop

tops

sign

anps pans

opst pots

opt opt

anps snap

opst stop

opst tops

sort

anps pans

anps snap

opt opt

opst pots

opst stop

opst tops

squash

pans snap

opt

pots stop tops

From Programming Pearls, Copyright  2000, Lucent Technologies Pearls-2-5

sign in C

int charcomp(char *x, char *y)
{ return(*x - *y); }

#define WORDMAX 100
int main(void)
{ char word[WORDMAX], sig[WORDMAX];

while (scanf("%s", word) != EOF) {
strcpy(sig, word);
qsort(sig, strlen(sig),

sizeof(char), charcomp);
printf("%s %s\n", sig, word);

}
return 0;

}

From Programming Pearls, Copyright  2000, Lucent Technologies Pearls-2-6

squash in C

int main(void)
{ char word[MAX], sig[MAX], oldsig[MAX];

int linenum = 0;
strcpy(oldsig, "");
while (scanf("%s %s", sig, word) != EOF)

if (strcmp(oldsig, sig) != 0
&& linenum > 0)

printf("\n");
strcpy(oldsig, sig);
linenum++;
printf("%s ", word);

}
printf("\n");
return 0;

}

From Programming Pearls, Copyright  2000, Lucent Technologies Pearls-2-7

The Complete Program

Executed by

sign <dict | sort | squash >grams

where dict contains 230,000 words.

Total run time is 18 seconds: 4 in sign, 11 in sort
and 3 in squash.

Some Output:

subessential suitableness
canter creant cretan nectar recant tanrec trance
caret carte cater crate creat creta react recta trace
destain instead sainted satined
adroitly dilatory idolatry
least setal slate stale steal stela tales
reins resin rinse risen serin siren
constitutionalism misconstitutional

From Programming Pearls, Copyright  2000, Lucent Technologies Pearls-2-8

