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圖 15-1　請求模式

拓撲

事件驅動架構運用非同步的射後不理（fire-and-forget）通訊方式，也就是由一個服務
觸發事件，再由其他服務回應該事件。這種拓撲有四個主要的架構元件：起始事件

（initiating event）、事件中介器（event broker）、事件處理器（event processor）（通常
簡稱為服務），以及衍生事件（derived event）。

起始事件是啟動整個事件流程的事件。這可以是一個簡單的事件，例如在線上拍賣會中

出價，也可以是複雜的事件，例如在員工結婚時，更新健康福利系統。起始事件會被送

往事件中介器內的事件通道進行處理。事件處理器會從事件中介器接收起始事件，並

開始處理它。

接收起始事件的事件處理器會執行與該事件的處理有關的任務（例如為拍賣標的物出

價），然後觸發所謂的衍生事件，並將此事件送至事件中介器，藉以非同步地向系統的

其餘部分宣告它做過的事情。其他事件處理器會回應這個衍生事件，執行特定處理，然

後透過新的衍生事件來宣告它們做了什麼事情。這個過程會持續進行，直到所有事件處

理器都閒置，且所有衍生事件都處理完畢為止。圖 15-2是這一個事件處理流程。
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圖 15-2　事件驅動架構的基本拓撲

事件中介器元件通常是聯邦式的（意指它有多個按領域劃分的叢集實例）。每一個聯邦

中介器都有該領域的事件流程（處理事件的整個工作流程）所使用的事件通道（例如

佇列與主題）。由於這種架構風格有解耦、非同步、射後不理廣播的特性，中介器拓撲

會使用主題、主題交換機制（在 Advanced Message Queuing Protocol〔AMQP〕〔https://
oreil.ly/TQDvA〕的情境下），或是採用發布訂閱傳訊模式的串流。

為了說明 EDA的整體處理方式，考慮圖 15-3所示的典型零售訂單輸入系統的工作流
程，其中，顧客可以下單購買商品（例如，像這本書一樣的書籍）。在這個範例中，

Order Placement事件處理器會接收起始事件（place order），將訂單寫入資料庫的資

料表中，並將訂單 ID回傳給顧客。然後，它用一個 order placed衍生事件來向系統

其餘部分宣告它已經建立訂單。請注意，有三個事件處理器對這個衍生事件有興趣：

Notification事件處理器、Payment事件處理器與 Inventory事件處理器，三者會平行執

行各自的任務。
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這種拓撲的缺點則取決於所採用的資料庫技術棧（technology stack），它可能是一種非
常昂貴的選項。然而，最大的缺點也許是事件處理器之間的同步動態耦合。為了說明

這項缺點，我們再次回到 Order Placement事件處理器需要的兩項資訊：書籍庫存與配

送選項。在這個拓撲裡，Order Placement事件處理器必須向 Inventory事件處理器以及

Order Shipment事件處理器發出同步呼叫，以取得所需資訊，因而在整個架構中形成緊

密的同步耦合點（如圖 15-38所示）。如同領域資料庫拓撲，在選擇這種資料庫拓撲之
前，你要先釐清每一個事件處理器與資料有關的所有需求。
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圖 15-38　Order Placement事件處理器需要的資料可能要透過同步通訊，從其他事件處理器取得

如果你的事件處理器幾乎都是自成一體的，只需要存取它自己的有界範疇裡的資料以及

相應的資料庫，那麼專屬資料庫拓撲會是很好的選項。如果事件處理器之間的通訊太過

頻繁（參見第 274頁的「治理」），架構師應考慮改採領域甚至是單體資料庫拓撲，以提
升整體效能與隨需擴展力。然而，如果在特定情況下需要經常變更資料庫的結構，為了

盡量減少受影響的事件處理器，你可能要在這些運作面特性之間做出取捨。
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圖 15-39　EDA架構的特性評分

在 EDA裡的量子數量可能從一個到多個不等，取決於每一個事件處理器與資料庫的
互動方式，以及系統是否使用 request-reply處理流程。即使 EDA的通訊依賴非同步呼
叫，如果有多個事件處理器使用同一個資料庫實例，它們也屬於同一個架構量子。在使

用 request-reply處理流程時也一樣，即使事件處理器之間的通訊仍然是非同步的，只要
有事件使用端需要立刻取得回應，這些事件處理器就會以同步的方式綁在一起，形成單

一量子。

舉例來說，假設有一個事件處理器向另一個事件處理器送出請求，想要建立訂單。第一

個事件處理器必須收到另一個事件處理器傳來的訂單 ID才能繼續工作。如果第二個事
件處理器（負責建立訂單並產生訂單 ID的那個）故障了，第一個事件處理器就無法做
下去。這意味著，即使這兩個事件處理器都傳送與接收非同步訊息，它們依然屬於同一

個架構量子，並且有相同的架構特性。
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例如其他有界範疇的資料庫或類別定義。這讓每一個範疇只定義自己需要的東西，不必

迎合其他部分，因此在不同有界範疇之間很難重複使用元件。

雖然重複使用通常是有益的，但還記得軟體架構第一法則嗎？一切都是取捨的結果。重

複使用的缺點在於實現它通常會增加系統的耦合度，不論是透過繼承還是組合。

如果架構師的目標是設計高度解耦的系統（這也是微服務的主要目標），那麼他們會偏

好複製，而非重複使用，將有界範疇的邏輯概念設計成一個服務及其對應的資料。

拓撲

微服務的基本拓撲如圖 18-1所示。由於這種架構風格的單一用途特性，它裡面的服務
比其他分散式架構，例如 orchestration-driven SOA（第 17章）、事件驅動架構（第 15
章）、service-based架構（第 14章）要小得多。架構師想讓每一個服務具備獨立運作所
需的所有部分，包括資料庫與其他依賴元件。
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圖 18-1　微服務架構風格的拓撲
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編排與調配

編排（choreography）採用與 EDA一樣的通訊風格。運用編排的架構沒有中央協調器，
且遵循有界範疇的理念，讓開發者可以在服務之間自然地實作解耦的事件。

在編排中，每一個服務都會在需要時自行呼叫其他服務，而不依賴中央中介者。例

如，考慮圖 18-7所示的情境。使用者想要取得另一位使用者的願望清單細節。由於
CustomerWishList服務沒有它需要的所有資訊，它會呼叫 CustomerDemographics以取得缺

少的資訊，然後將結果回傳給使用者。
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圖 18-7　在微服務中使用編排來管理協作

由於微服務架構不像其他服務導向架構一樣具備全域中介者，如果架構師需要在多個服

務之間進行協調，他們可以建立自己的在地中介者（通常稱為調配服務〔orchestration 
service〕。
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圖 18-16　微服務架構的特性評分

在這種架構風格裡，獨立、單一用途，因而粒度細小的服務通常帶來高故障容忍度，因

此這項特性的分數很高。

這種架構的其他高分特性還有隨需擴展力、彈性與易演進性。在有史以來最具隨需擴展

性的系統中，有些系統都成功地採用了微服務。同理，由於這種風格高度依賴自動化，

以及與運作（operation）之間的巧妙整合，架構師可以在設計中支援彈性。由於這種架
構在演進時的每一步都傾向高度解耦，它也支援現代企業的演進式變更法，甚至可在架

構層面上支援。現代企業動作迅速，軟體開發一直賣力地追上腳步。由極小且高度解耦

的部署單元來組成的架構能夠支援更快的變更速度。

效能經常是微服務的問題。分散式架構必須進行許多網路呼叫才能完成工作，這會帶來

很高的效能成本。
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將生成式 AI納入架構
如果你要將 Gen AI納入架構，我們建議採用抽象化與模組化。你必須有能力將目前

的 LLM 迅速地換成另一個 LLM，並且讓系統能夠設置防護機制（rails），以及評估
（evals）不同 LLM的結果。

例如，假設有一家求職平台想要利用 Gen AI來將履歷匿名化，他們的目的是降低偏
見，讓雇主把重點放在求職者的技能，而非人口統計或其他條件上。這通常是人力工

作，但 LLM也能輕鬆做到。不過 LLM的結果是否精確？它會不會把履歷中的太多資訊
刪掉了？又或者，它會不會保留太多人口統計資料？這種系統必須能夠蒐集樣本與指

標，並比較各種 LLM引擎。Langfuse（https://langfuse.com）等工具能幫你在架構中建
立這類的觀察機制。

將生成式 AI當成架構師助理
只要開發者提供合適的提示詞，LLM（例如 Copilot〔https://oreil.ly/kaEdv〕）就能產
生程式碼，幫他們節省許多時間與心力。LLM特別適合用來處理非常明確的問題，例
如「寫出一段 C#程式，讓它可以產生不含重複數字且未曾出現過的四位數 PIN碼」。
但是 LLM技術能夠協助軟體架構師處理常見任務嗎？以下是一些與架構有關的提示詞 
範例：

• 風險評估：「在這個架構裡有沒有哪個區域存在風險？」

• 風險緩解：「我該如何處理這個風險？」

• 反模式：「這個架構有沒有常見的反模式？」

• 決策：「這個工作流程應該採用調配還是編排？」

截至本書第二版撰稿時（2025年初），我們還沒有獲得太大的成功。詢問 LLM在特定情
境下應該選擇微服務還是 space-based架構幾乎（甚至根本）不會獲得正確的答案。為
什麼？因為正如本書所述，在軟體架構中的一切都是取捨的結果。LLM雖然擅長理解
知識，但是到目前為止，它們仍然缺乏做出適當決策的智慧。這種智慧涉及大量脈絡，

因此對架構師來說，自己解決商業問題比教導 LLM認識該問題以及所牽涉的廣泛環境
及脈絡要快得多。光是從我們列出八項需要額外關注的交會處，就足以看出這是一項艱

鉅的任務了。




