
前言

Python 程式語言擁有可能難以掌握的獨特優點與魅力。許多熟悉其他語言
的程式設計師，會以一種狹隘的視野來接觸 Python，而非欣然接納其完整
的能力。有些程式設計師則是往另一個方向走得太遠，過度使用可能在日

後造成很大問題的 Python 功能。

本書深入介紹撰寫程式的 Pythonic 思維，即運用 Python 的最佳方式。我假
設你已經對 Python 語言有了基本的了解，本書就是建立在這個基礎上。新
手程式設計師將學習 Python 關鍵功能的最佳實務做法。有經驗的程式設計
師將學會如何自信地擁抱新工具。

透過這本書，我希望能幫助你使用 Python 來實現你的目標，不論目標為
何，或者至少幫助你在程式設計的旅途中獲得更多的樂趣。

本書涵蓋的內容

本書的每一章都包含一系列廣泛但相關的做法（items）。請隨意在各個做
法之間跳轉，並按照你的興趣來進行。每個做法都包含簡明而具體的指引，

解釋如何更有效地編寫 Python 程式。做法中包含該做什麼、要避免什麼、
如何取得適當的平衡，以及為什麼這是最佳選擇的建議。做法之間會相互

參考，讓你在閱讀時更容易拾遺補闕。

第三版涵蓋 Python 語言到版本 3.13 的內容（請參閱做法 1：「了解你使用
的是哪個版本的 Python」）。與第二版相比，本書包含了 35 個全新的做法。
第二版中的做法大多都經過修訂並納入其中，而許多做法都有了大幅度的

前言 前言xiv

更新。對於某些做法，由於最佳實踐方式隨著 Python 在過去五年的成熟而
演進，我的建議也完全改變了。

Python 採取「內建電池（batteries included）」的理念來設計其標準程式庫
（standard library）。這些內建套件（built-in packages）有許多與 Python
慣用語是如此緊密地結合在一起，簡直就像是語言規格的一部分。完整的

標準模組過於龐大，無法在這本書中全部涵蓋，但我已將我認為至關重要

且需要知道和使用的模組納入其中。

Python 也有一個充滿活力的社群模組（community-built modules）生態系
統，這些模組以很有價值的方式擴充了 Python 語言。儘管我在各個做法中
提到了需要了解的重要套件，但這本書並不打算成為詳盡的參考手冊。同

樣地，儘管 Python 的套件管理（package management）很重要，但我還是
避免深入討論相關細節，因為它正在快速改變和演化。

第 1 章：Pythonic 思維

Python 社群已經開始使用 Pythonic 這個形容詞來描述遵循特定風格的程式
碼。Python 的慣用語（idioms）是在使用 Python 語言和與其他程式設計師
合作的過程中逐漸形成的。本章涵蓋在 Python 中做最常見事情的最佳方式。

第 2 章：字串和切片

Python 內建了處理字串（string）和序列（sequence）的語法、方法和模
組。這些功能非常重要，幾乎在每個程式中都會看到它們。它們使 Python
成為一種優秀的語言，善於剖析（parsing）文字、檢查資料格式，以及與
電腦使用的低階二進位表示法介接。

第 3 章：迴圈與迭代器

處理循序資料（sequential data）是程式的關鍵需求。Python 中的迴圈
（loops）對於涉及內建資料型別、容器型別和使用者定義類別的常見任務
來說，感覺自然又強大。Python 也支援迭代器（iterators），它們能以更函
式化的方式來處理任意的資料串流，並帶來顯著的好處。

前言 xv

第 4 章：字典

Python 內建的字典（dictionary）型別是一種多用途的資料結構，可用於程
式中的簿記工作。與簡單的串列（lists）相比，字典在新增和移除項目時提
供更好的效能。Python 還擁有特殊的語法和相關的內建模組，可以強化字
典，使其功能超越其他語言中雜湊表（hash tables）的預期表現。

第 5 章：函式

Python 中的函式有許多額外的功能，可以讓程式設計師的生活更輕鬆。有
些類似於其他程式語言的功能，但許多是 Python 所獨有的。本章將介紹如
何使用函式來闡明意圖、促進重複使用並減少臭蟲（bugs）。

第 6 章：概括式和產生器

Python 有特殊的語法來快速迭代串列、字典和集合，以產出衍生的資料
結構。它也允許函式以漸進的方式回傳由可迭代的值所構成的一個串流

（stream）。本章將介紹這些功能如何提供更好的效能、減少記憶體用量，
並改善可讀性。

第 7 章：類別和介面

Python 是一種物件導向（object-oriented）的語言。要在 Python 中完成工
作，通常需要編寫新的類別，並定義它們如何透過其介面（interfaces）和
階層架構（hierarchies）來互動。本章將介紹如何使用類別來表達物件的預
期行為。

第 8 章：元類別和屬性

元類別（metaclasses）和動態屬性（dynamic attributes）是 Python 強大的
功能。然而，它們也能讓你實作出極度怪異和出乎意料的行為。本章涵蓋

使用這些機制的常見慣用語，以確保你遵循最不意外法則（rule of least
surprise）。

第 9 章：共時性和平行處理

藉由執行緒（threads）和非同步協程（asynchronous coroutines）等功能，
Python 可以輕鬆寫出看似正在同時做許多不同事情的共時程式（concurrent

前言 前言xvi

programs）。Python 也可以透過系統呼叫、子行程（subprocesses）和特殊
模組來平行處理工作。本章將介紹如何在這些有細微差異的情況下，以最

佳的方式運用 Python。

第 10 章：穩健性

使程式在遇到意外情況時能夠可靠運作，與製作具備正確功能的程式同樣

重要。Python 有內建的功能和模組，可以幫助強化你的程式，讓它們在各
種情況下都能保持穩健。

第 11 章：效能

Python 具備各種功能，可讓程式以相對較低的努力程度，達到令人驚豔的
效能。透過這些功能，不僅能從主機系統榨出極致效能，還能保有 Python
高階本質所帶來的生產力優勢。

第 12 章：資料結構與演算法

Python 包含許多標準資料結構（data structures）和演算法（algorithms）經
過最佳化的實作，可以幫助你以最少的努力達到高效能。這個語言還提供了

通過實戰考驗的資料型別（data types）和輔助函式（helper functions），用
於常見任務（例如，處理貨幣和時間），讓你可以專注於程式的核心需求。

第 13 章：測試與除錯

無論使用何種語言撰寫程式碼，你都應該測試程式碼，但對 Python 而言，
測試尤其重要。Python 的動態特質會以獨特的方式增加執行時期出錯的風
險。幸運的是，它們也使編寫測試和診斷程式故障變得更容易。本章將介

紹 Python 用來測試和除錯的內建工具。

第 14 章：協作

協同開發 Python 程式需要你深思熟慮如何編寫程式碼。即使你是單獨工
作，你也會想要了解如何使用他人所寫的模組。本章將介紹讓人們能夠在
Python 程式上共同作業的標準工具和最佳實務做法。

第 3章 迴圈與迭代器86 做法 18 ｜ 使用 zip 平行處理迭代器

使用 zip 平行處理迭代器

在 Python 中，你常常會遇到由相關物件組成的許多串列。串列概括式（list
comprehensions）能讓你輕鬆地取得來源串列，並將運算式套用到每個項
目，藉此產生另一個衍生串列（請參閱做法 40：「使用概括式取代 map 和
filter」）。舉例來說，這裡我拿一個名稱串列來建立一個對應的串列，其中

包含每個名稱的字元數：

names = ["Cecilia", "Lise", "Marie"]

counts = [len(n) for n in names]

print(counts)

>>>

[7, 4, 5]

衍生串列（counts）中的項目，會透過它們在序列中的對應位置，與來源

串列（names）中的項目產生關聯。為了在單一迴圈中存取這兩個串列的

項目，我可以迭代來源串列（names）的長度，並使用 range 產生的偏移量
來索引任一個串列。舉例來說，這裡我使用平行並進的索引動作（parallel
indexing）來判斷哪個名稱最長：

longest_name = None

max_count = 0

for i in range(len(names)):

 count = counts[i]

 if count > max_count:

 longest_name = names[i]

 max_count = count

print(longest_name)

>>>

Cecilia

問題在於整個 for 述句在視覺上過於雜亂。索引運算─ names[i] 和
counts[i]─使得程式碼難以閱讀。透過相同的迴圈索引 i 對兩個陣列進
行索引操作似乎是多餘的。我可以使用 enumerate 內建函式（請參閱做法

做法18

第 3章 迴圈與迭代器88 做法 19 ｜ 避免 for 和 while 迴圈之後的 else 區塊

>>>

Cecilia

Lise

Marie

新項目 "Rosalind" 並沒有出現在輸出中。為什麼？這正是 zip 的運作方
式。它會持續產出元組，直到其中一個被包裹的迭代器耗盡為止。它的輸

出長度只會跟最短的輸入一樣長。如果過早截斷對你的程式而言可能是種

問題，你可以將 strict 關鍵字引數傳入 zip─這是自 Python 3.10 以來
的新選項─如果任何輸入在其他輸入之前耗盡，這會導致所回傳的產生

器提出例外：

for name, count in zip(names, counts, strict=True): # 改變了

 print(name)

>>>

Cecilia

Lise

Marie

Traceback ...

ValueError: zip() argument 2 is shorter than argument 1

又或者，你也可以使用 itertools 內建模組中的 zip_longest 函式來解決
這種截斷問題，用預設值填補缺少的項目（請參閱做法 24：「考慮使用
itertools 來處理迭代器和產生器」）。

要記得的事

 ✦ 內建的 zip 函式可用來平行迭代多個迭代器。

 ✦ zip 會建立一個產出元組的惰性產生器（lazy generator），它可以用於無
限長的輸入。

 ✦ 如果你提供給 zip 的迭代器長度不一，zip 會默默地將其輸出截斷為最
短的迭代器。

 ✦ 如果你想要確保這種默默截斷的情形不會發生，而且有迭代器長度不符

時應該導致執行時期錯誤，請將 strict 關鍵字引數傳遞給 zip 函式。

做法 55 ｜ 優先選用公開屬性而非私有屬性 265

優先選用公開屬性而非私有屬性

在 Python 中，類別的屬性（attributes）只有兩種可見性（visibility）：公
開（public）和私有（private）：

class MyObject:

 def __init__(self):

 self.public_field = 5

 self.__private_field = 10

 def get_private_field(self):

 return self.__private_field

公開屬性可讓任何人在物件上使用點運算子（dot operator）以進行存取：

foo = MyObject()

assert foo.public_field == 5

私有欄位（private fields）是透過在屬性名稱前面加上雙底線（double
underscore）來指定。它們可由包含它們的類別（containing class）之方法
直接存取：

assert foo.get_private_field() == 10

然而，從類別外部直接存取私有欄位會引發例外：

foo.__private_field

>>>

Traceback ...

AttributeError: 'MyObject' object has no attribute '__private_field'

類別方法也能存取私有屬性，因為它們是在外圍的 class 區塊中宣告的：

class MyOtherObject:

 def __init__(self):

 self.__private_field = 71

 @classmethod

 def get_private_field_of_instance(cls, instance):

 return instance.__private_field

bar = MyOtherObject()

assert MyOtherObject.get_private_field_of_instance(bar) == 71

做法55

第 12章 資料結構與演算法562 做法 106 ｜ 當精確度至關重要時，請使用 decimal

當精確度至關重要時，請使用 decimal

若要撰寫與數值資料互動的程式碼，Python 會是極佳的程式語言。Python
的整數（integer）型別可以表示任何實際大小的值。它的雙精度浮點
（double-precision floating point）型別符合 IEEE 754 標準。此語言也提供
一種用於虛數值（imaginary values）的標準複數（complex number）型別。
然而，這些不足以應付每一種情況。

舉例來說，假設我想要計算透過可攜式衛星電話（portable satellite phone）
撥打國際電話要向客戶收取的費用。我知道客戶通話的時間，以分鐘和秒

計算（例如，3 分鐘 42 秒）。我也有從美國（United States）撥打電話到南
極洲（Antarctica）的固定費率（例如，每分鐘 1.45 美元）。通話費用應該
是多少？

使用浮點數運算，計算出的費用看起來很合理：

rate = 1.45

seconds = 3 * 60 + 42

cost = rate * seconds / 60

print(cost)

>>>

5.364999999999999

結果比正確數值（5.365）少了 0.0001，這是因為 IEEE 754 的浮點數表示
法所致。我可能會想把這個數值無條件進位到 5.37，以適當地涵蓋客戶所
產生的所有成本。然而，因為浮點數誤差，四捨五入到最接近的整數美分，

實際上會減少最終費用（從 5.364 變成 5.36），而非增加（從 5.365 變成
5.37）：

print(round(cost, 2))

>>>

5.36

解決方案是使用 decimal 內建模組中的 Decimal 類別。Decimal類別預設提供
28 個小數位數（decimal places）的定點（fixed point）數學運算─而且如

果需要，還能夠更高。這能避開 IEEE 754 浮點數中的精確度（precision）問
題。這個類別也讓你對捨入（rounding）行為有更多的控制。

做法106

