
CHAPTER 01 C++基礎知識 020

1.7.2 二維陣列

1．靜態定義

二維陣列的靜態定義格式如下圖所示。

型別說明符 陣列名稱 [常數運算式][常數運算式];

元素型別 陣列的列數（第 1維的長度） 陣列的行數（第 2維的長度）

其中，陣列的行數和列數必須是整數常數，不能是變數，該數值必須是已知的數

值。

 z 可以在定義時對陣列進行初始化。

 int a[2][4]={{0,1,2,3},{7,2,9,5}};

 int a[2][4]={0,1,2,3,7,2,9,5};

 int a[2][4]={{0,1,2},{0}};

 z 將二維陣列作為參數時，可以省略其列數，但必須指定其行數。

 int sum(int a[][5],int n);

2．動態定義

一個 m列 n行的二維陣列相當於 m個長度為 n的一維陣列。

(int*)*型別的指標 int*型別的指標 int型別

 int **array=new int*[m];

 for(int i=0;i<m;++i){

 array[i]=new int[n];//按列分配記憶體空間

 }

 for(int i=0;i<m;i++){

 delete[] array[i]; //按列釋放記憶體空間

1.8　熟悉字串 021

 }

 delete[] array;

訓練 18（P5731）：蛇形填數，輸入一個不大於 9的正整數 n，以蛇形填寫 n×n的

矩陣。

#include<bits/stdc++.h> //萬能標頭檔

using namespace std;

int a[20][20];

int main(){

 int n,x,y,total=1;

 scanf("%d",&n);

 x=y=1;

 a[1][1]=1;

 while(total<n*n){

 while(y+1<=n&&!a[x][y+1])//向右

 a[x][++y]=++total;

 while(x+1<=n&&!a[x+1][y])//向下

 a[++x][y]=++total;

 while(y-1>0&&!a[x][y-1])//向左

 a[x][--y]=++total;

 while(x-1>0&&!a[x-1][y])//向上

 a[--x][y]=++total;

 }

 for(int i=1;i<=n;i++){

 for(int j=1;j<=n;j++)

 printf("%3d",a[i][j]);

 if(i<n) printf("\n");

 }

 return 0;

}

1.8　熟悉字串

字串指儲存在記憶體空間的連續位元組中的一系列字元。C++中的字串分為兩種
形式：C風格的字串、C++ string型別的字串。

3.4　佇列 065

1．空佇列

無論佇列開頭和佇列結尾在什麼位置，只要 rear和 front指向同一位置，就視為
空佇列。若將循環佇列中的一維陣列畫成環形圖，則空佇列的情況如下圖所示，

front=rear。
退

出
佇列 退出

佇
列推
入
佇
列

推
入

佇
列

2．滿佇列

在此採用浪費一個記憶體空間的方法，當 rear的下一個位置是 front時，就視
為滿佇列。但是 rear向後移動一個位置（rear+1）後，很可能超出了陣列的
最大索引值，這時它的下一個位置應該為 0，滿佇列（臨界狀態）的情況如下
圖所示。其中，佇列的最大記憶體空間數 Maxsize=n，當 rear=Maxsize−1時，
rear+1=Maxsize。而根據循環佇列的規則，rear 的下一個位置為 0 才對，怎麼才
能變為 0 呢？可以考慮取餘運算，即 (rear+1)%Maxsize=0，而此時 front=0，即
(rear+1)%Maxsize=front，為滿佇列的臨界狀態。

對滿佇列的一般狀態的判斷是否也適用此方法呢？例如，循環佇列滿佇列

（一般狀態）的情況如下圖所示。假如最大記憶體空間數 Maxsize=100，當
rear=1 時，rear+1=2。進行取餘後，(rear+1)%Maxsize=2，而此時 front=2，即
(rear+1)%Maxsize=front。對滿佇列的一般狀態也可以採用此公式進行判斷，因為
一個不大於Maxsize的數，與Maxsize進行取餘運算，其結果仍然是該數本身，所

3.4　佇列 067

對於退出佇列操作，當 front後移一位時，為了處理臨界狀態（front+1=Maxsize），
需要將 front加 1後進行取餘運算。

 e=Q[front]; //用變數記錄 front指向的元素

 front=(front+1)%Maxsize; //front後移一位

 注意

在循環佇列中無論是推入佇列還是退出佇列，在將 rear、front加 1後都

要進行取餘運算，主要是為了處理臨界狀態。

5．佇列中的元素數量計算

在循環佇列中到底儲存了多少個元素呢？在循環佇列中儲存的實際上是從 front到
rear−1這一區間的資料元素，但是不可以直接用兩個索引值相減得到元素資料。因
為佇列是循環的，所以存在兩種情況：rear≥front，如下圖（a）所示；rear<front，
如下圖（b）所示。

在上圖（b）中，rear=4，front=Maxsize−2，rear−front=6−Maxsize。但是可以看到
循環佇列中的元素實際上為 6個，那怎麼辦呢？當兩者之差為負數時，可以將差值

CHAPTER 04 樹的應用 108

演算法程式碼：

void posorder(Btree T) {//後序遍歷

 if(T){

 posorder(T->lchild);

 posorder(T->rchild);

 cout<<T->data<<" ";

 }

}

二元樹遍歷程式碼簡單明瞭，「cout<<T->data;」述句在前面的就是前序遍歷，在中
間的就是中序遍歷，在後面的就是後序遍歷。

若不要求遵循程式執行流程，只寫出二元樹遍歷序列，則還可以使用投影法快速

得到該遍歷序列。

1．前序遍歷

前序遍歷就像在左邊刮大風的情況下遍歷，將二元樹的樹枝刮向右方，遍歷順序

為根、左子樹、右子樹，太陽直射，將所有節點都投影到地上。一棵二元樹，其

前序遍歷投影如下圖所示，前序遍歷序列為 ABDECFG。

2．中序遍歷

中序遍歷就像在無風的情況下遍歷，遍歷順序為左子樹、根、右子樹，太陽直射，

將所有節點都投影到地上。一棵二元樹，其中序遍歷投影如下圖所示，中序遍歷

序列為 DBEAFGC。

CHAPTER

09
動態規劃入門

動態規劃是一種表格處理方法，它把原問題分解為若干子問題，由下而上先求最

小子問題的解，把結果儲存在表格中，在求大的子問題的解時，直接從表格查詢

小的子問題的解，避免重複計算，以提升效率。

9.1　動態規劃祕笈

對什麼樣的問題可以使用動態規劃求解呢？首先要分析問題是否具有以下 3種性
質。

（1）最佳子結構。最佳子結構指問題的最佳解包含其子問題的最佳解，這是使用
動態規劃的基本條件。

（2）子問題重疊。子問題重疊指求解過程中每次產生的子問題並不總是新問題，
有大量子問題是重複的。例如，在遞迴求解費氏數列時，有大量子問題被重複求

解，如下圖所示。動態規劃利用了子問題重疊的性質，由下而上對每個子問題都

只求解一次，將其結果儲存在一個表格中，當再次需要求解該子問題時，直接在

表格中查詢，無須再次求解，進而提升效率。子問題重疊不是使用動態規劃解決

問題的必要條件，但更能突出動態規劃的優勢。

CHAPTER 09 動態規劃入門 286

（3）無後效性。在動態規劃中會將原問題分解為若干子問題，將每個子問題的求
解過程都作為一個階段，在完成前一階段後，根據前一階段的結果求解後一階段。

並且，對當前階段的求解只與之前階段有關，與之後階段無關，這叫做「無後效

性」。若一個問題有後效性，則需要將其轉換或逆向求解來消除後效性，之後才可

以使用動態規劃。

9.1.1 動態規劃的三個要素

在現實生活中有一類活動，可以將活動過程按順序分解為若干個相互聯繫的階段，

在每個階段都要做出決策，對全部過程的決策是一個決策序列。對每個階段決策

的選擇都不是隨意確定的，它依賴當前狀態，又影響以後的發展。這種把問題看

作一個前、後關聯的具有鏈狀結構的多階段的過程叫做「多階段決策過程」，這種

問題就叫做「多階段決策問題」。

根據無後效性，動態規劃的求解過程構成一個有向非循環圖，求解遍歷的順序就

是該有向非循環圖的一個拓撲序。在有向非循環圖中，節點對應問題的狀態，有

向邊對應狀態之間的轉移，如何進行狀態轉移對應動態規劃中的決策。所以，狀

態、階段、決策就是動態規劃的三個要素。

狀態

階段

決策

CHAPTER 09 動態規劃入門 288

階段 1

狀態

決策

階段 2 階段 3 階段 4 階段 5

在求解動態規劃問題時，如何確定狀態和狀態轉移方程是關鍵，也是困難點。不同

的狀態和狀態轉移方程可能產生不同的演算法複雜性。動態規劃問題靈活多變，

在各類演算法競賽中層出不窮，需要多練習、多總結，累積豐富的經驗且發揮創

造力。

9.2　背包問題

背包問題是動態規劃的經典問題之一，本節講解 01背包問題、完全背包問題及其
最佳化。背包問題指在一個有容積或重量限制的背包內裝入物品，物品有體積或重

量、價值等屬性，要求在滿足背包容量或重量限制的情況下裝入物品，使背包內

的物品價值之和最大。根據物品限制條件的不同，背包問題可分為 01 背包問題、
完全背包問題、多重背包問題、分組背包問題和混合背包問題等。

混合背包問題

多重背包問題

完全背包問題 01背包問題

分組背包問題

9.2.1 01背包問題

給定 n種物品，每種物品都有重量 wi和價值 vi，每種物品都只有一個。另外，

背包容量為 W。求解在不超過背包容量的前提下將哪些物品裝入背包，才可以

