
CHAPTER 01 C++基礎知識 020

1.7.2  二維陣列

1．靜態定義

二維陣列的靜態定義格式如下圖所示。

型別說明符      陣列名稱 [常數運算式 ][常數運算式 ];

元素型別 陣列的列數（第 1維的長度） 陣列的行數（第 2維的長度）

其中，陣列的行數和列數必須是整數常數，不能是變數，該數值必須是已知的數

值。

 z 可以在定義時對陣列進行初始化。

    int a[2][4]={{0,1,2,3},{7,2,9,5}};

    int a[2][4]={0,1,2,3,7,2,9,5};

    int a[2][4]={{0,1,2},{0}};

 z 將二維陣列作為參數時，可以省略其列數，但必須指定其行數。

    int sum(int a[][5],int n);

2．動態定義

一個 m列 n行的二維陣列相當於 m個長度為 n的一維陣列。

(int*)*型別的指標   int*型別的指標   int型別

    int **array=new int*[m];

    for(int i=0;i<m;++i){

        array[i]=new int[n];//按列分配記憶體空間

    } 

    for(int i=0;i<m;i++){

        delete[] array[i]; //按列釋放記憶體空間
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    } 

    delete[] array; 

訓練 18（P5731）：蛇形填數，輸入一個不大於 9的正整數 n，以蛇形填寫 n×n的

矩陣。

#include<bits/stdc++.h> //萬能標頭檔 

using namespace std;

int a[20][20];

int main(){

    int n,x,y,total=1;

    scanf("%d",&n);

    x=y=1; 

    a[1][1]=1;

    while(total<n*n){

        while(y+1<=n&&!a[x][y+1])//向右 

            a[x][++y]=++total;

        while(x+1<=n&&!a[x+1][y])//向下 

            a[++x][y]=++total;

        while(y-1>0&&!a[x][y-1])//向左

            a[x][--y]=++total;

        while(x-1>0&&!a[x-1][y])//向上 

            a[--x][y]=++total;

    }

    for(int i=1;i<=n;i++){

        for(int j=1;j<=n;j++)

            printf("%3d",a[i][j]);

        if(i<n) printf("\n");

    }

    return 0;

}

1.8　熟悉字串

字串指儲存在記憶體空間的連續位元組中的一系列字元。C++中的字串分為兩種
形式：C風格的字串、C++ string型別的字串。
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1．空佇列

無論佇列開頭和佇列結尾在什麼位置，只要 rear和 front指向同一位置，就視為
空佇列。若將循環佇列中的一維陣列畫成環形圖，則空佇列的情況如下圖所示，

front=rear。
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2．滿佇列

在此採用浪費一個記憶體空間的方法，當 rear的下一個位置是 front時，就視
為滿佇列。但是 rear向後移動一個位置（rear+1）後，很可能超出了陣列的
最大索引值，這時它的下一個位置應該為 0，滿佇列（臨界狀態）的情況如下
圖所示。其中，佇列的最大記憶體空間數 Maxsize=n，當 rear=Maxsize−1時，
rear+1=Maxsize。而根據循環佇列的規則，rear 的下一個位置為 0 才對，怎麼才
能變為 0 呢？可以考慮取餘運算，即 (rear+1)%Maxsize=0，而此時 front=0，即
(rear+1)%Maxsize=front，為滿佇列的臨界狀態。

對滿佇列的一般狀態的判斷是否也適用此方法呢？例如，循環佇列滿佇列

（一般狀態）的情況如下圖所示。假如最大記憶體空間數 Maxsize=100，當
rear=1 時，rear+1=2。進行取餘後，(rear+1)%Maxsize=2，而此時 front=2，即
(rear+1)%Maxsize=front。對滿佇列的一般狀態也可以採用此公式進行判斷，因為
一個不大於Maxsize的數，與Maxsize進行取餘運算，其結果仍然是該數本身，所
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對於退出佇列操作，當 front後移一位時，為了處理臨界狀態（front+1=Maxsize），
需要將 front加 1後進行取餘運算。

    e=Q[front];   //用變數記錄 front指向的元素

    front=(front+1)%Maxsize; //front後移一位

 注意

在循環佇列中無論是推入佇列還是退出佇列，在將 rear、front加 1後都

要進行取餘運算，主要是為了處理臨界狀態。

5．佇列中的元素數量計算

在循環佇列中到底儲存了多少個元素呢？在循環佇列中儲存的實際上是從 front到
rear−1這一區間的資料元素，但是不可以直接用兩個索引值相減得到元素資料。因
為佇列是循環的，所以存在兩種情況：rear≥front，如下圖（a）所示；rear<front，
如下圖（b）所示。

在上圖（b）中，rear=4，front=Maxsize−2，rear−front=6−Maxsize。但是可以看到
循環佇列中的元素實際上為 6個，那怎麼辦呢？當兩者之差為負數時，可以將差值
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演算法程式碼：

void posorder(Btree T) {//後序遍歷

    if(T){

       posorder(T->lchild);

       posorder(T->rchild);

       cout<<T->data<<"  ";

    }

}

二元樹遍歷程式碼簡單明瞭，「cout<<T->data;」述句在前面的就是前序遍歷，在中
間的就是中序遍歷，在後面的就是後序遍歷。

若不要求遵循程式執行流程，只寫出二元樹遍歷序列，則還可以使用投影法快速

得到該遍歷序列。

1．前序遍歷

前序遍歷就像在左邊刮大風的情況下遍歷，將二元樹的樹枝刮向右方，遍歷順序

為根、左子樹、右子樹，太陽直射，將所有節點都投影到地上。一棵二元樹，其

前序遍歷投影如下圖所示，前序遍歷序列為 ABDECFG。

2．中序遍歷

中序遍歷就像在無風的情況下遍歷，遍歷順序為左子樹、根、右子樹，太陽直射，

將所有節點都投影到地上。一棵二元樹，其中序遍歷投影如下圖所示，中序遍歷

序列為 DBEAFGC。
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09
動態規劃入門 

動態規劃是一種表格處理方法，它把原問題分解為若干子問題，由下而上先求最

小子問題的解，把結果儲存在表格中，在求大的子問題的解時，直接從表格查詢

小的子問題的解，避免重複計算，以提升效率。

9.1　動態規劃祕笈

對什麼樣的問題可以使用動態規劃求解呢？首先要分析問題是否具有以下 3種性
質。

（1）最佳子結構。最佳子結構指問題的最佳解包含其子問題的最佳解，這是使用
動態規劃的基本條件。

（2）子問題重疊。子問題重疊指求解過程中每次產生的子問題並不總是新問題，
有大量子問題是重複的。例如，在遞迴求解費氏數列時，有大量子問題被重複求

解，如下圖所示。動態規劃利用了子問題重疊的性質，由下而上對每個子問題都

只求解一次，將其結果儲存在一個表格中，當再次需要求解該子問題時，直接在

表格中查詢，無須再次求解，進而提升效率。子問題重疊不是使用動態規劃解決

問題的必要條件，但更能突出動態規劃的優勢。
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（3）無後效性。在動態規劃中會將原問題分解為若干子問題，將每個子問題的求
解過程都作為一個階段，在完成前一階段後，根據前一階段的結果求解後一階段。

並且，對當前階段的求解只與之前階段有關，與之後階段無關，這叫做「無後效

性」。若一個問題有後效性，則需要將其轉換或逆向求解來消除後效性，之後才可

以使用動態規劃。

9.1.1  動態規劃的三個要素

在現實生活中有一類活動，可以將活動過程按順序分解為若干個相互聯繫的階段，

在每個階段都要做出決策，對全部過程的決策是一個決策序列。對每個階段決策

的選擇都不是隨意確定的，它依賴當前狀態，又影響以後的發展。這種把問題看

作一個前、後關聯的具有鏈狀結構的多階段的過程叫做「多階段決策過程」，這種

問題就叫做「多階段決策問題」。

根據無後效性，動態規劃的求解過程構成一個有向非循環圖，求解遍歷的順序就

是該有向非循環圖的一個拓撲序。在有向非循環圖中，節點對應問題的狀態，有

向邊對應狀態之間的轉移，如何進行狀態轉移對應動態規劃中的決策。所以，狀

態、階段、決策就是動態規劃的三個要素。

狀態

階段

決策



CHAPTER 09 動態規劃入門 288

階段 1

狀態

決策

階段 2 階段 3 階段 4 階段 5

在求解動態規劃問題時，如何確定狀態和狀態轉移方程是關鍵，也是困難點。不同

的狀態和狀態轉移方程可能產生不同的演算法複雜性。動態規劃問題靈活多變，

在各類演算法競賽中層出不窮，需要多練習、多總結，累積豐富的經驗且發揮創

造力。

9.2　背包問題

背包問題是動態規劃的經典問題之一，本節講解 01背包問題、完全背包問題及其
最佳化。背包問題指在一個有容積或重量限制的背包內裝入物品，物品有體積或重

量、價值等屬性，要求在滿足背包容量或重量限制的情況下裝入物品，使背包內

的物品價值之和最大。根據物品限制條件的不同，背包問題可分為 01 背包問題、
完全背包問題、多重背包問題、分組背包問題和混合背包問題等。

混合背包問題 

多重背包問題 

完全背包問題 01背包問題

分組背包問題 

9.2.1  01背包問題

給定 n種物品，每種物品都有重量 wi和價值 vi，每種物品都只有一個。另外，

背包容量為 W。求解在不超過背包容量的前提下將哪些物品裝入背包，才可以




