
xxv

前言

這本第三版的書籍將介紹世上最流行的程式語言之一：Python。也許你是程式初學者，
或雖然已有經驗，但也想要認識 Python這種語言。在本書中，我有時會比較 Python與
其他語言，以呈現一般人經常認為它是怎麼運作的，尤其是一些微妙的差異。

計算機語言比人類語言更易學，因為它們更精簡，也更精確。Python是公認為最容易學
習、閱讀、撰寫的電腦語言之一。它由資料（類似口說語言裡的名詞）以及指令或程

式碼（類似動詞）組成。你將在各個章節學到 Python的基本程式與資料結構，瞭解如
何結合它們，並建構更高階的程式與資料結構。在過程中，你看到的、寫出來的程式將

越來越長、越來越複雜。

你將學會這門語言，以及如何運用它。我們會先認識 Python的核心語言與「隨機附
贈」的標準程式庫，再一路看到如何尋找、下載、安裝、使用各種好用的第三方套件。

我的重點是自己在 20年來、於正式環境中使用 Python所累積下來的、真正實用的知
識，而不是罕見的主題，或複雜的奇技淫巧。

雖然這是一本入門書籍，但仍納入一些進階主題，目的是為了讓你提前接觸它們。本書

依然會介紹資料庫、網頁⋯等領域，但技術會迅速演變，現在的 Python開發者通常必
須瞭解一些機器學習、佇列（queues）、或 Unicode知識。你也可以在本書中找到它們
的詳細說明。

Python有一些特殊功能，使用它們通常比採用其他語言的語法更好。例如，使用 for與

iterator來撰寫迴圈，比手動遞增計數變數要直接得多。

xxvi | 前言

我們在學習新內容時，經常難以分辨哪些詞彙是專業術語、哪些只是隨口表達，也不容

易判斷哪些概念確實很重要，也就是學生常問的：「這會考嗎？」，我會適度標出有明確

意義或較重要的 Python術語和觀念，但不會一次灌輸太多內容。真正的 Python程式碼
從本書開頭就會頻繁出現。

如果內容比較難懂，或是有更 Pythonic（符合 Python 風格）的寫法，我

會加入這一種說明。

Python並非完美。我會告訴你比較怪異，或應該避免的做法，並且告訴你可以改用哪種
方案。

適合的讀者

雖然具備一些程式設計經驗可能有幫助，但我希望初學者也能從本書中受益。Python非
常適合當成入門的電腦語言，而且你不需要通讀或完全理解全書的內容，就能開始使
用它。

第三版的變動

雖然本書的整體架構大致沿用第二版，但各頁內容皆已全面更新：

• 移除第 20–22章，還有附錄 A、C和 E

• 加入關於 AI、資料科學、效能的章節

• 更廣泛地探討開發環境

• 最新的 Python功能與修改

• 重視型態提示的使用

• 更新許多範例與較冷僻的小細節（arcane tidbits）1

• 將之前的第 19章（Be a Pythonista）擴大為全部的第二部分

1 這好像蠻適合當成樂團或寵物飼料的名字的！？

30 | 第二章：型態與變數

Python似乎真的很喜歡那一個樸實的底線字元：

• 以一個下底線（_）開頭的名稱會被 import陳述式視為某種程度的私有（第 12章會
說明）。

• 以兩個底線（__）開頭的名稱，在建立物件類別時，會被特別處理（第 11 章會
介紹）。

• 前後皆有雙底線的名稱用於物件類別中的魔術方法（也叫做 dunder方法，第 11章
會提到）。

Python型態
如你所知，bits、bytes 與多 byte組合在電腦記憶體或儲存空間中沒有固有的意義，你必
須在某處以某種東西來賦予意義，並記得它們，這就是程式語言的型態的作用。

每一種電腦架構（由電腦公司設計的具體架構）都有能力處理特定的 bit組合，並將其
視為不同型態。這些型態包括不同大小的數字、文字字元⋯等。Python定義了自己的物
件型態來對應這些常見的硬體型態，以及一些純軟體型態，例如複數。表 2-1是這些內
建型態，以下是表格中的各個欄位的意思：

• 「名稱」欄位是它的中（英）文名稱。

• 「型態」欄位是該型態在 Python中的實際名稱。

• 「可變？」欄位表示該型態的值（不是型態本身！）能不能更改。

• 「範例」欄位是一些用來表達這一種型態值的 Python語法。

• 「章」欄位則指出你會在哪一章深入瞭解相關內容。

表 2-1　Python的基本資料型態

名稱 型態 可變？ 範例 章

布林（Boolean） bool 否 True, False 第 3章

整數（Integer） int 否 47、25000、25_000 第 3章

浮點（Floating point） float 否 3.14、2.7e5 第 3章

複數（Complex） complex 否 3j、5 + 9j 第 3章

文字字串（Text string） str 否 'alas'、"alack"、'''a verse attack''' 第 4章

串列（List） list 是 ['Winken', 'Blinken', 'Nod'] 第 8章

Tuple tuple 否 (2, 4, 8) 第 8章

Bytes bytes 否 b'ab\xff' 第 5章

指定數值 | 31

名稱 型態 可變？ 範例 章

Bytearray bytearray 是 bytearray(...) 第 5章

集合（Set） set 是 set([3, 5, 7]) 第 9章

凍結集合（Frozen set） frozenset 否 frozenset(['Elsa', 'Otto']) 第 9章

字典（Dictionary） dict 是 {'game': 'bingo', 'dog': 'dingo',

'drummer': 'Ringo'}

第 9章

下一章將介紹數字型態：bool、int、float與 complex。

指定數值

到目前為止，你已經知道數值可以用字面值（例如 5）或變數（例如先前被指派 5的

x）來表示了。Python有一些指定字面值的規則，這些規則與底層型態有關。如你所
見，整數是用一串數字來表示的，而 float（浮點值，會在下一章介紹）可由一串數字加
上小數點組成。

在接下來的幾章中，我會示範如何為 Python的標準型態指定字面值、將它們指派給變
數，以及執行各種運算（例如數字的加法）。

將物件視為記憶體中的透明塑膠盒

你可以把物件想成記憶體書架上的透明塑膠盒。它裡面的一些內容有固定大小（ID、型
態、參考計數），其他內容的大小（值本身的 bits）則會變動。所有 Python 資料都是如

此。你可能會看到某個 int物件旁邊是 list物件，再旁邊是使用者自訂物件。

Python 程式碼位於記憶體中的不同位置（另一個書架）。Python程式碼中的變數可視

為貼在資料物件上的便利貼，或是一張綁在細線上的標籤。Python會自動追蹤所有的程
式碼與資料，為我們節省心力。

回顧與展望

本章專門探討變數（在程式裡使用的名稱）與物件。Python與許多其他程式語言不同，
因為變數只是名稱，而它所指的物件有額外的資訊：唯一的 ID、型態、值，以及指向該
物件的變數數量（參考計數）。

218 | 第十一章：物件

圖 11-1　鴨子定型（typing）的意思，不是笨拙地伸出兩根食指來打字

魔術方法

你現在已經能建立並使用基本物件了。這一節要教的東西可能會讓你大吃一驚—而且

是好的那種吃驚。

當你輸入 a = 3 + 8這種東西時，值為 3與 8的整數物件是怎麼知道該如何實作 +的？

又或者，當你輸入 name = "Daffy" + " " + "Duck"時，Python如何知道這次的 +代表

串接兩個字串？a與 name又是如何透過 =取得結果的？你可以透過 Python的特殊方法

（或更戲劇化地稱為魔術方法）來存取這些運算子。

這些方法的名稱開頭與結尾都有雙底線（__），為什麼？因為程式開發者不太可能在變

數名稱中使用它們。你已經看過一種魔術方法了：__init__()會根據類別定義與傳入的

引數來初始化一個新建立的物件。你也看到過雙底線名稱如何用來改寫類別屬性與方法
名稱。

假設你有一個簡單的 Word類別，你想要用一個 equals()方法來比較兩個單字，但大小

寫視為相同，也就是說，若一個 Word含有 ha，而另一個含有 HA，兩者應視為相等。

下面的例子是我們的第一次嘗試，使用一般方法 equals()。屬性 self.text是 Word物件

內的文字字串，而 equals()方法會比較 self.text與 word2（另一個 Word物件）的文字

字串：

220 | 第十一章：物件

表 11-1　做比較的魔術方法

方法 說明

__eq__(self, other) self == other

__ne__(self, other) self != other

__lt__(self, other) self < other

__gt__(self, other) self > other

__le__(self, other) self <= other

__ge__(self, other) self >= other

表 11-2　做數學算術的魔術方法

方法 說明

__add__(self, other) self + other

__sub__(self, other) self – other

__mul__(self, other) self * other

__floordiv__(self, other) self // other

__truediv__(self, other) self / other

__mod__(self, other) self % other

__pow__(self, other) self ** other

+（魔術方法 __add__()）與 -（魔術方法 __sub__()）等數學運算子並非只能用來處理數

字，舉例來說，Python字串物件可使用 +來做串接，用 *來做重複。此外還有許多魔術

方法可用，請參考網路上的「Special method names」文件（https://bit.ly/pydocs-smn）。
表 11-3是其中最常見的幾個。

表 11-3　其他的魔術方法

方法 說明

__str__(self) str(self)

__repr__(self) repr(self)

__len__(self) len(self)

除了 __init__()之外，在自訂類別中最常用的應該是 __str__()，它決定你的物件該如

何印出。print()、str()和字串格式化工具（第 17章會介紹）都會使用它。互動式直
譯器則使用 __repr__()函式來輸出變數。如果你沒有定義 __str__()或 __repr__()，

Python會使用預設的物件字串表示法：

>>> first = Word('ha')

>>> first

建立模型：Python框架 | 549

Browser Use（https://browser-use.com）

控制網頁瀏覽器

更進階的做法是將多個代理串接起來，將更複雜的作業流程自動化。例如：

LangChain（https://oreil.ly/l3HKE）

這是一款能將 LLM模型連接到一個或多個代理的 Python框架。

MCP（https://oreil.ly/llJ6W）

來自 Anthropic的模型內容協定（Model Context Protocol）。

A2A（https://oreil.ly/kFIMv）

Google的 Agent2Agent協定看似 MCP。它能連接代理，也能協助發現代理，隨著模
型遍布全球，這個功能也將日漸重要，這正是 Google擅長的領域。

效率

事情的真相是⋯⋯更有效率地執行這些計算的方法已經找到了。電腦硬體與軟體變得更

容易擴展與更便宜也有所助益。值得注意的是，GPU執行平行乘法與加法的效能，也遠

勝於 CPU，這些運算正是 AI的核心工作。雲端運算的興起，也讓規模更勝以往的電腦
能夠用來處理這些問題。

建立模型：Python框架
Python在 AI領域的主導地位是自然發展而成的。這個語言免費、開源，並且非常適合
處理資料。尤其是，Python既能拿來建立 AI模型，也能用來運行 AI模型。

首先，我們來看看如何用 Python建立模型。

Python 領域早期且重要的組件包括 NumPy 與 SciPy，它們讓這一款速度不算快的語
言，也能處理巨大的運算問題。

SciKit 是一組建構在 SciPy 之上的科學套件。其中的 scikit-learn（https://scikit-learn.
org）是重要的 ML套件：它支援建模、分類、分群與多種演算法。其安裝命令是 pip

install scikit-learn。

558 | 第二十六章：AI

回顧與展望

Python已經是資料科學與 AI開發領域的主力語言了。AI已從規則導向的專家系統轉
變為資料導向的 LLM與其他 AI模型，像 PyTorch這樣的 Python框架也隨之出現。如
今，我們可以用命令列或 Python程式碼來取用完整的多模態模型，也能串接代理，以
擴展其能力範圍。

本章並未詳細介紹如何使用特定 API或 Hugging Face等通用 API來建立模型，而是以

一個框架（Ollama）來示範如何使用不同模型。Ollama是免費的，更重要的是，它可
以在你的本機電腦上運行，讓你不必將資料上傳至雲端服務。

電腦運算正邁入新階段：撰寫程式碼，將不如組合各種服務來發掘資料模式來得重要。

下一章要探討效能的諸多面向，涵蓋演算法到具體工具。

習題

我在第 551頁的「使用 Ollama」展示了許多不理想的例子。挑選你喜歡的任何一種其他
AI模型（無論是開源的、商用的、本機的、託管的皆可），試著完成以下任務：

26.1 計算單字 strawberry裡有幾個字母 r。

26.2 定義 limerick。

26.3 寫一首 limerick。主題由你挑選。

26.4 寫一個名為 utc_now_str()的 Python函式，以回傳目前的 UTC日期與時間字串。

26.5 寫一個 Python產生器生成式，以回傳 1到 5的整數。

26.6 重現範例 1-5。

26.7 重現範例 24-3。

